

Jupyter Notebook Tools for Sphinx

nbsphinx is a Sphinx [https://www.sphinx-doc.org/] extension that provides a source parser for
*.ipynb files.
Custom Sphinx directives are used to show Jupyter Notebook [https://jupyter.org/] code cells (and of
course their results) in both HTML and LaTeX output.
Un-evaluated notebooks – i.e. notebooks without stored output cells – will be
automatically executed during the Sphinx build process.

	Quick Start:
	
	Install nbsphinx

	Edit your conf.py and add 'nbsphinx' to extensions.

	Edit your index.rst and add the names of your *.ipynb files
to the toctree.

	Run Sphinx!

	Online documentation (and example of use):
	https://nbsphinx.readthedocs.io/

	Source code repository (and issue tracker):
	https://github.com/spatialaudio/nbsphinx/

	License:
	MIT – see the file LICENSE for details.

All of the following content
was generated from Jupyter notebooks,
except for the sections Normal reStructuredText Files,
Contributing, References and Version History,
which were generated from Sphinx’s built-in reStructuredText [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] format.
The sections
Custom Notebook Formats,
Dummy Notebook 2 for Gallery and
Using Markdown Files
are using alternative storage formats for Jupyter notebooks,
see Custom Notebook Formats for details.

click here to see full table of contents

	Installation
	nbsphinx Packages

	nbsphinx Prerequisites
	Python

	Sphinx

	pip

	pandoc

	Pygments Lexer for Syntax Highlighting

	Jupyter Kernel

	Usage
	Project Setup

	Running Sphinx

	Watching for Changes with sphinx-autobuild

	Automatic Creation of HTML and PDF output on readthedocs.org
	Using requirements.txt

	Using conda

	Automatic Creation of HTML and PDF output on GitLab Pages

	HTML Themes
	Sphinx’s Built-In Themes

	3rd-Party Themes

	Using Notebooks with Git

	Configuration
	Sphinx Configuration Values
	exclude_patterns

	extensions

	html_css_files

	html_sourcelink_suffix

	latex_additional_files

	mathjax3_config

	pygments_style

	suppress_warnings

	nbsphinx Configuration Values
	nbsphinx_allow_errors

	nbsphinx_assume_equations

	nbsphinx_codecell_lexer

	nbsphinx_custom_formats

	nbsphinx_epilog

	nbsphinx_execute

	nbsphinx_execute_arguments

	nbsphinx_input_prompt

	nbsphinx_kernel_name

	nbsphinx_output_prompt

	nbsphinx_prolog

	nbsphinx_prompt_width

	nbsphinx_requirejs_options

	nbsphinx_requirejs_path

	nbsphinx_responsive_width

	nbsphinx_thumbnails

	nbsphinx_timeout

	nbsphinx_widgets_options

	nbsphinx_widgets_path

	Markdown Cells
	Equations
	Automatic Equation Numbering

	Manual Equation Numbering

	Citations
	Footnote citations

	Code

	Tables

	Images
	Using the HTML tag

	SVG support for LaTeX

	Cell Attachments

	HTML Elements (HTML only)

	Info/Warning Boxes

	Links to Other Notebooks

	Links to *.rst Files (and Other Sphinx Source Files)

	Links to Local Files

	Links to Domain Objects

	Code Cells
	Code, Output, Streams

	Cell Magics

	Special Display Formats
	Local Image Files

	Image URLs

	Math

	Plots

	Pandas Dataframes

	Markdown Content

	YouTube Videos

	Interactive Widgets (HTML only)
	Troubleshooting

	Arbitrary JavaScript Output (HTML only)

	Unsupported Output Types

	ANSI Colors

	Raw Cells
	Usage
	Jupyter Notebook

	JupyterLab

	Available Raw Cell Formats
	None

	reST

	Markdown

	HTML

	LaTeX

	Python

	Hidden Cells

	Controlling Notebook Execution
	Pre-Executing Notebooks
	Long-Running Cells

	Rare Libraries

	Exceptions

	Client-specific Outputs

	Interactive Input

	Explicitly Dis-/Enabling Notebook Execution

	Ignoring Errors

	Ignoring Errors on a Per-Cell Basis

	Configuring Kernels
	Kernel Name

	Kernel Arguments

	Environment Variables

	Cell Execution Timeout

	Prolog and Epilog
	Examples

	Custom Notebook Formats
	Example: Jupytext

	Notebooks in Sub-Directories
	A Sub-Section

	That’s a “Strange” Section

	Creating Thumbnail Galleries
	Gallery With Nested Documents
	Last Image Is Used by Default

	Using a Cell Tag to Select a Thumbnail

	Using Cell Metadata to Select a Thumbnail and Provide a Tooltip

	Choosing from Multiple Outputs

	No Thumbnail Available

	Specifying a Thumbnail File

	Gallery With Links (HTML only)

	Using toctree In A Notebook
	A Notebook that’s just a “toctree” Target

	An External Link (HTML only) [https://nbsphinx.readthedocs.io/]

	Custom CSS
	For All Pages

	For All RST files

	For All Notebooks

	For a Single Notebook

	Normal reStructuredText Files
	Links to Notebooks (and Other Sphinx Source Files)

	Links to Notebooks, Ye Olde Way

	Sphinx Directives for Info/Warning Boxes

	Domain Objects
	example_python_function()

	References
	Citations

	Footnote citations

	Thumbnail Link Galleries (HTML only)

	Thumbnail Galleries
	Dummy Notebook 1 for Gallery

	Dummy Notebook 2 for Gallery

	Using Markdown Files
	Links to Notebooks (and Other Sphinx Source Files)

	Math

	Tables

	Images

	External Links

	Contributing
	Development Installation

	Building the Documentation

	Building Themes

	Testing

	References

	Version History

There is also /orphan.ipynb, just for the sake of it.

How To Navigate This Site

Use the next and previous links at the top and the bottom of each page
to flip through the pages.
Alternatively, you can use the right and left arrow keys
on your keyboard.
Some additional keyboard shortcuts
are provided via the accesskey feature [https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey]:
n next,
p previous,
u up (= to the parent page),
i index,
s search and
m menu (= open/close sidebar).

Click on the hamburger button [https://en.wikipedia.org/wiki/Hamburger_button] in the topbar
to open and close the sidebar.
The width of the sidebar can be adjusted by dragging its border.
Click on the title in the topbar to scroll to the top of the page,
if already at the top, go “up” to the parent page
(eventually ending up on this very page).

On touch-enabled devices:
Tap at the top of the page to show the topbar (if it was scrolled away);
swipe from the left edge to show the sidebar,
swipe towards the left to hide it.

Installation

Note that some packages may be out of date. You can always get the newest nbsphinx release from PyPI [https://pypi.org/project/nbsphinx] (using pip). If you want to try the latest development version, have a look at the section Contributing.

nbsphinx Packages

[image: Anaconda Badge] [https://anaconda.org/conda-forge/nbsphinx]

If you are using the conda package manager (e.g. with Miniforge [https://github.com/conda-forge/miniforge], Miniconda [https://docs.conda.io/en/latest/miniconda.html] or Anaconda [https://www.anaconda.com/products/distribution#Downloads]), you can install nbsphinx from the conda-forge [https://conda-forge.org/] channel:

conda install -c conda-forge nbsphinx

[image: PyPI version] [https://pypi.org/project/nbsphinx]

You can of course also install nbsphinx with pip, Python’s own package manager:

python3 -m pip install nbsphinx

Depending on your Python installation, you may have to use python instead of python3. If you have installed the module already, you can use the --upgrade flag to get the newest release.

There are more packages available. For an overview, see repology [https://repology.org/project/python:nbsphinx/versions].

nbsphinx Prerequisites

Some of the aforementioned packages will install some of these prerequisites automatically, some of the things may be already installed on your computer anyway.

Python

Of course you’ll need Python, because both Sphinx and nbsphinx are implemented in Python. There are many ways to get Python. If you don’t know which one is best for you, you can try Anaconda [https://www.anaconda.com/products/individual#Downloads].

Sphinx

You’ll need Sphinx [https://www.sphinx-doc.org/] as well, because nbsphinx is just a Sphinx extension and doesn’t do anything on its own.

If you use conda, you can get Sphinx from the conda-forge channel [https://anaconda.org/conda-forge/sphinx]:

conda install -c conda-forge sphinx

Alternatively, you can install it with pip (see below):

python3 -m pip install Sphinx

pip

Recent versions of Python already come with pip pre-installed. If you don’t have it, you can install it manually [https://pip.pypa.io/en/latest/installing/].

pandoc

The stand-alone program pandoc [https://pandoc.org/] is used to convert Markdown content to something Sphinx can understand. You have to install this program separately, ideally with your package manager. If you are using conda, you can install pandoc from the conda-forge channel [https://anaconda.org/conda-forge/pandoc]:

conda install -c conda-forge pandoc

If that doesn’t work out for you, have a look at pandoc’s installation instructions [https://pandoc.org/installing.html].

Note

The use of pandoc in nbsphinx is temporary, but will likely stay that way for a long time, see issue #36 [https://github.com/spatialaudio/nbsphinx/issues/36].

Pygments Lexer for Syntax Highlighting

To get proper syntax highlighting in code cells, you’ll need an appropriate Pygments lexer. This of course depends on the programming language of your Jupyter notebooks (more specifically, the pygments_lexer metadata of your notebooks).

For example, if you use Python in your notebooks, you’ll have to have the IPython package installed, e.g. with

conda install -c conda-forge ipython

or

python3 -m pip install IPython

Note

If you are using Anaconda with the default channel and syntax highlighting in code cells doesn’t seem to work, you can try to install IPython from the conda-forge channel or directly with pip, or as a work-around, add 'IPython.sphinxext.ipython_console_highlighting' to extensions in your conf.py.

For details, see Anaconda issue #1430 [https://github.com/ContinuumIO/anaconda-issues/issues/1430] and nbsphinx issue #24 [https://github.com/spatialaudio/nbsphinx/issues/24].

Jupyter Kernel

If you want to execute your notebooks during the Sphinx build process (see Controlling Notebook Execution), you need an appropriate Jupyter kernel [https://jupyter.readthedocs.io/en/latest/projects/kernels.html] installed.

For example, if you use Python, you should install the ipykernel package, e.g. with

conda install -c conda-forge ipykernel

or

python3 -m pip install ipykernel

If you created your notebooks yourself with Jupyter, it’s very likely that you have the right kernel installed already.

Note

If your automatic builds on https://readthedocs.org are failing due to an error like the one below, add ipykernel to docs/requirements.txt or doc/environment.yml to resolve.

jupyter_client.kernelspec.nosuchkernel: no such kernel named python3

Usage

Project Setup

In the directory with your notebook files, run this command (assuming you have Sphinx [https://www.sphinx-doc.org/] and nbsphinx installed already):

python3 -m sphinx.cmd.quickstart

Answer the questions that appear on the screen. In case of doubt, just press the <Return> key repeatedly to take the default values.

After that, there will be a few brand-new files in the current directory. You’ll have to make a few changes to the file named conf.py. You should make sure that the extensions setting at least contains 'nbsphinx' (but you might want to add other useful extensions as well):

extensions = [
 'nbsphinx',
]

For an example, see this project’s conf.py file.

Once your conf.py is in place, edit the file named index.rst and add the file names of your notebooks (without the .ipynb extension) to the toctree [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree] directive. For an example, see this project’s doc/index.rst file.

Alternatively, you can delete the file index.rst and replace it with your own notebook called index.ipynb which will serve as main page. In this case you can create the main toctree in index.ipynb.

Running Sphinx

To create the HTML pages, use this command:

python3 -m sphinx <source-dir> <build-dir>

If you have many notebooks, you can do a parallel build by using the -j option:

python3 -m sphinx <source-dir> <build-dir> -j<number-of-processes>

For example, if your source files are in the current directory and you have 4 CPU cores, you can run this:

python3 -m sphinx . _build -j4

Afterwards, you can find the main HTML file in _build/index.html.

Subsequent builds will be faster, because only those source files which have changed will be re-built. To force re-building all source files, use the -E option.

Note

By default, notebooks will be executed during the Sphinx build process only if they do not have any output cells stored. See Controlling Notebook Execution.

To create LaTeX output, use:

python3 -m sphinx <source-dir> <build-dir> -b latex

If you don’t know how to create a PDF file from the LaTeX output, you should have a look at Latexmk [http://personal.psu.edu/jcc8//software/latexmk-jcc/] (see also this tutorial [https://mg.readthedocs.io/latexmk.html]).

Sphinx can automatically check if the links you are using are still valid. Just invoke it like this:

python3 -m sphinx <source-dir> <build-dir> -b linkcheck

Watching for Changes with sphinx-autobuild

If you think it’s tedious to run the Sphinx build command again and again while you make changes to your notebooks, you’ll be happy to hear that there is a way to avoid that: sphinx-autobuild [https://pypi.org/project/sphinx-autobuild]!

It can be installed with

python3 -m pip install sphinx-autobuild

You can start auto-building your files with

python3 -m sphinx_autobuild <source-dir> <build-dir>

This will start a local webserver which will serve the generated HTML pages at http://localhost:8000/. Whenever you save changes in one of your notebooks, the appropriate HTML page(s) will be re-built and when finished, your browser view will be refreshed automagically. Neat!

You can also abuse this to auto-build the LaTeX output:

python3 -m sphinx_autobuild <source-dir> <build-dir> -b latex

However, to auto-build the final PDF file as well, you’ll need an additional tool. Again, you can use latexmk for this (see above). Change to the build directory and run

latexmk -pdf -pvc

If your PDF viewer isn’t opened because of LaTeX build errors, you can use the command line flag -f to force creating a PDF file.

Automatic Creation of HTML and PDF output on readthedocs.org

There are two different methods, both of which are described below.

In both cases, you’ll first have to create an account on https://readthedocs.org/ and connect your GitLab/Github/Bitbucket/… account. Instead of connecting, you can also manually add any publicly available Git/Subversion/Mercurial/Bazaar/… repository.

After doing the steps described below, you only have to “push” to your repository, and the HTML pages and the PDF file of your stuff are automagically created on readthedocs.org. Awesome!

You can even have different versions of your stuff, just use Git tags and branches and select in the readthedocs.org settings [https://readthedocs.org/dashboard/] which of those should be created.

Note

If you want to execute notebooks (see Controlling Notebook Execution), you’ll need to install the appropriate Jupyter kernel. In the examples below, the IPython kernel is installed from the packet ipykernel.

Using requirements.txt

	Create a file named .readthedocs.yml in the main directory of your repository with the following contents:

version: 2
build:
 os: ubuntu-22.04
 tools:
 python: "3"
python:
 install:
 - requirements: doc/requirements.txt

For further options see https://docs.readthedocs.io/en/latest/config-file/.

	Create a file named doc/requirements.txt (or whatever you chose in the previous step) containing the required pip packages:

ipykernel
nbsphinx

You can also install directly from Github et al., using a specific branch/tag/commit, e.g.

git+https://github.com/spatialaudio/nbsphinx.git@master

Using conda

	Create a file named .readthedocs.yml in the main directory of your repository with the following contents:

version: 2
formats: all
conda:
 environment: doc/environment.yml

For further options see https://docs.readthedocs.io/en/latest/config-file/.

	Create a file named doc/environment.yml (or whatever you chose in the previous step) describing a conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html] like this:

channels:
 - conda-forge
dependencies:
 - python>=3
 - pandoc
 - ipykernel
 - pip
 - pip:
 - nbsphinx

It is up to you if you want to install nbsphinx with conda or with pip (but note that the conda package might be outdated). And you can of course add further conda and pip packages. You can also install packages directly from Github et al., using a specific branch/tag/commit, e.g.

- pip:
 - git+https://github.com/spatialaudio/nbsphinx.git@master

Note

The specification of the conda-forge channel is recommended because it tends to have more recent package versions than the default channel.

Automatic Creation of HTML and PDF output on GitLab Pages

When using GitLab pages, you can use nbsphinx by adding the file .gitlab-ci.yml to your repo and copying the following lines into this file:

image: python:3-slim

variables:
 PIP: python3 -m pip
 SPHINX: python3 -m sphinx -W --keep-going --color

build-docs:
 stage: build
 script:
 - apt-get update -y
 - apt-get install -y --no-install-recommends pandoc
 - $PIP install -r doc/requirements.txt
 - $SPHINX -d doctrees doc html -b html
 - $SPHINX -d doctrees doc linkcheck -b linkcheck
 artifacts:
 when: always
 paths:
 - html
 - linkcheck/output.*

pages:
 stage: deploy
 variables:
 GIT_STRATEGY: none
 script:
 - mv html public
 artifacts:
 paths:
 - public
 rules:
 - if: $CI_COMMIT_REF_NAME == $CI_DEFAULT_BRANCH

HTML Themes

The nbsphinx extension does not provide its own theme, you can use any of the available themes or create a custom one [https://www.sphinx-doc.org/en/master/development/theming.html#creating-themes], if you feel like it.

The following (incomplete) list of themes contains up to three links for each theme:

	The documentation (or the official sample page) of this theme (if available; see also the documentation of the built-in Sphinx themes [https://www.sphinx-doc.org/en/master/usage/theming.html#builtin-themes])

	How the nbsphinx documentation looks when using this theme

	How to enable this theme using either requirements.txt or readthedocs.yml and theme-specific settings (in some cases)

Sphinx’s Built-In Themes

	agogo: example [https://nbsphinx.readthedocs.io/en/agogo-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/agogo-theme%5E...agogo-theme]

	alabaster [https://alabaster.readthedocs.io/]: example [https://nbsphinx.readthedocs.io/en/alabaster-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/alabaster-theme%5E...alabaster-theme]

	bizstyle: example [https://nbsphinx.readthedocs.io/en/bizstyle-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/bizstyle-theme%5E...bizstyle-theme]

	classic: example [https://nbsphinx.readthedocs.io/en/classic-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/classic-theme%5E...classic-theme]

	haiku: example [https://nbsphinx.readthedocs.io/en/haiku-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/haiku-theme%5E...haiku-theme]

	nature: example [https://nbsphinx.readthedocs.io/en/nature-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/nature-theme%5E...nature-theme]

	pyramid: example [https://nbsphinx.readthedocs.io/en/pyramid-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/pyramid-theme%5E...pyramid-theme]

	scrolls: example [https://nbsphinx.readthedocs.io/en/scrolls-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/scrolls-theme%5E...scrolls-theme]

	sphinxdoc: example [https://nbsphinx.readthedocs.io/en/sphinxdoc-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/sphinxdoc-theme%5E...sphinxdoc-theme]

	traditional: example [https://nbsphinx.readthedocs.io/en/traditional-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/traditional-theme%5E...traditional-theme]

3rd-Party Themes

	basicstrap [https://pythonhosted.org/sphinxjp.themes.basicstrap/]: example [https://nbsphinx.readthedocs.io/en/basicstrap-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/basicstrap-theme%5E...basicstrap-theme]

	better [https://sphinx-better-theme.readthedocs.io/]: example [https://nbsphinx.readthedocs.io/en/better-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/better-theme%5E...better-theme]

	bootstrap [https://sphinx-bootstrap-theme.readthedocs.io/]: example [https://nbsphinx.readthedocs.io/en/bootstrap-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/bootstrap-theme%5E...bootstrap-theme]

	bootstrap-astropy [https://github.com/astropy/astropy-sphinx-theme]: example [https://nbsphinx.readthedocs.io/en/astropy-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/astropy-theme%5E...astropy-theme]

	cloud/redcloud/greencloud [https://cloud-sptheme.readthedocs.io/]: example [https://nbsphinx.readthedocs.io/en/cloud-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/cloud-theme%5E...cloud-theme]

	dask_sphinx_theme [https://github.com/dask/dask-sphinx-theme]: example [https://nbsphinx.readthedocs.io/en/dask-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/dask-theme%5E...dask-theme]

	furo [https://github.com/pradyunsg/furo]: example [https://nbsphinx.readthedocs.io/en/furo-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/furo-theme%5E...furo-theme]

	guzzle_sphinx_theme [https://github.com/guzzle/guzzle_sphinx_theme]: example [https://nbsphinx.readthedocs.io/en/guzzle-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/guzzle-theme%5E...guzzle-theme]

	insipid [https://github.com/mgeier/insipid-sphinx-theme/]: example [https://nbsphinx.readthedocs.io/en/insipid-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/insipid-theme%5E...insipid-theme]

	maisie_sphinx_theme [https://github.com/maisie-dev/maisie-sphinx-theme]: example [https://nbsphinx.readthedocs.io/en/maisie-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/maisie-theme%5E...maisie-theme]

	pangeo [https://github.com/pangeo-data/sphinx_pangeo_theme/]: example [https://nbsphinx.readthedocs.io/en/pangeo-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/pangeo-theme%5E...pangeo-theme]

	pydata_sphinx_theme [https://pydata-sphinx-theme.readthedocs.io/]: example [https://nbsphinx.readthedocs.io/en/pydata-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/pydata-theme%5E...pydata-theme]

	python_docs_theme [https://github.com/python/python-docs-theme]: example [https://nbsphinx.readthedocs.io/en/python-docs-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/python-docs-theme%5E...python-docs-theme]

	pytorch_sphinx_theme [https://github.com/shiftlab/pytorch_sphinx_theme]: example [https://nbsphinx.readthedocs.io/en/pytorch-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/pytorch-theme%5E...pytorch-theme]

	sizzle [https://docs.red-dove.com/sphinx_sizzle_theme/]: example [https://nbsphinx.readthedocs.io/en/sizzle-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/sizzle-theme%5E...sizzle-theme]

	sphinx_book_theme [https://sphinx-book-theme.readthedocs.io/]: example [https://nbsphinx.readthedocs.io/en/sphinx-book-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/sphinx-book-theme%5E...sphinx-book-theme]

	sphinx_holoviz_theme [https://github.com/pyviz-dev/sphinx_holoviz_theme]: example [https://nbsphinx.readthedocs.io/en/holoviz-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/holoviz-theme%5E...holoviz-theme]

	sphinx_material [https://github.com/bashtage/sphinx-material]: example [https://nbsphinx.readthedocs.io/en/material-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/material-theme%5E...material-theme]

	sphinx_py3doc_enhanced_theme [https://github.com/ionelmc/sphinx-py3doc-enhanced-theme]: example [https://nbsphinx.readthedocs.io/en/py3doc-enhanced-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/py3doc-enhanced-theme%5E...py3doc-enhanced-theme]

	sphinx_rtd_theme [https://github.com/readthedocs/sphinx_rtd_theme]: example [https://nbsphinx.readthedocs.io/en/rtd-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/rtd-theme%5E...rtd-theme]

	typlog [https://github.com/typlog/sphinx-typlog-theme]: example [https://nbsphinx.readthedocs.io/en/typlog-theme/], usage [https://github.com/spatialaudio/nbsphinx/compare/typlog-theme%5E...typlog-theme]

If you know of another Sphinx theme that should be included here, please open an issue on Github [https://github.com/spatialaudio/nbsphinx/issues]. An overview of many more themes can be found at https://sphinx-themes.org/.

Using Notebooks with Git

Git [https://git-scm.com/] is extremely useful for managing source code and it can and should also be used for managing Jupyter notebooks. There is one caveat, however: Notebooks can contain output cells with rich media like images, plots, sounds, HTML, JavaScript and many other types of bulky machine-created content. This can make it hard to work with Git efficiently, because changes in those bulky contents can completely obscure the more interesting human-made changes in text and source
code. Working with multiple collaborators on a notebook can become very tedious because of this.

It is therefore highly recommended that you remove all outputs from your notebooks before committing changes to a Git repository (except for the reasons mentioned in Pre-Executing Notebooks).

If there are no output cells in a notebook, nbsphinx will by default execute the notebook, and the pages generated by Sphinx will therefore contain all the output cells. See Controlling Notebook Execution for how this behavior can be customized.

In the Jupyter Notebook application, you can manually clear all outputs by selecting “Cell” \(\to\) “All Output” \(\to\) “Clear” from the menu. In JupyterLab, the menu items are “Edit” \(\to\) “Clear All Outputs”.

There are several tools available to remove outputs from multiple files at once without having to open them separately. You can even include such a tool as “clean/smudge filters” into your Git workflow, which will strip the output cells automatically whenever a Git command is executed. For details, have a look at those links:

	https://github.com/kynan/nbstripout

	https://github.com/toobaz/ipynb_output_filter

	https://tillahoffmann.github.io/2017/04/17/versioning-jupyter-notebooks-with-git.html

	http://timstaley.co.uk/posts/making-git-and-jupyter-notebooks-play-nice/

	https://web.archive.org/web/20191003081426/https://pascalbugnion.net/blog/ipython-notebooks-and-git.html

	https://github.com/choldgraf/nbclean

	https://jamesfolberth.org/articles/2017/08/07/git-commit-hook-for-jupyter-notebooks/

	https://github.com/ResearchSoftwareActions/EnsureCleanNotebooksAction

Configuration

The following configuration values can be used in the conf.py file, see Project Setup.

Sphinx Configuration Values

All configuration values are described in the Sphinx documentation [https://www.sphinx-doc.org/en/master/usage/configuration.html], here we mention only the ones which may be relevant in combination with nbsphinx.

exclude_patterns

Sphinx builds all potential source files (reST files, Jupyter notebooks, …) that are in the source directory (including any sub-directories), whether you want to use them or not. If you want certain source files not to be built, specify them in exclude_patterns [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-exclude_patterns]. For example, you might want to ignore source files in your build directory:

exclude_patterns = ['_build']

Note that the directory .ipynb_checkpoints is automatically added to exclude_patterns by nbsphinx.

extensions

This is the only required value. You have to add 'nbsphinx' to the list of extensions [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-extensions], otherwise it won’t work.

Other interesting extensions are:

	'sphinx.ext.mathjax' (Sphinx loads this by default) for math formulas

	'sphinxcontrib.bibtex' for bibliographic references

	'sphinxcontrib.rsvgconverter' for SVG->PDF conversion in LaTeX output

	'sphinx_copybutton' for adding “copy to clipboard” buttons [https://sphinx-copybutton.readthedocs.io/] to all text/code boxes

html_css_files

See Custom CSS and html_css_files [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_css_files].

html_sourcelink_suffix

By default, a .txt suffix is added to source files. This is only relevant if the chosen HTML theme supports source links and if html_show_sourcelink [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_show_sourcelink] is True.

Jupyter notebooks with the suffix .ipynb.txt are normally not very useful, so if you want to avoid the additional suffix, set html_sourcelink_suffix [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_sourcelink_suffix] to the empty string:

html_sourcelink_suffix = ''

latex_additional_files

latex_additional_files [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-latex_additional_files] can be useful if you are using BibTeX files, see References.

mathjax3_config

The configuration value mathjax3_config [https://www.sphinx-doc.org/en/master/usage/extensions/math.html#confval-mathjax3_config] can be useful to enable Automatic Equation Numbering.

For Sphinx versions below 4.0.0, which used MathJax version 2, the relevant configuration value was called mathjax_config.

pygments_style

Use pygments_style [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-pygments_style] to change the color/font theme that’s used for syntax highlighting in source code.

This affects both code cells and code blocks in Markdown cells (unless overwritten by the html_theme [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_theme]).

suppress_warnings

Warnings can be really helpful to detect small mistakes, and you should consider invoking Sphinx with the -W [https://www.sphinx-doc.org/en/master/man/sphinx-build.html#cmdoption-sphinx-build-W] option, which turns warnings into errors. However, warnings can also be annoying, especially if you are fully aware of the “problem”, but you simply don’t care about it for some reason. In this case, you can use
suppress_warnings [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-suppress_warnings] to silence specific types of warnings.

If you want to suppress all warnings from nbsphinx, use this:

suppress_warnings = [
 'nbsphinx',
]

You can also be more specific:

suppress_warnings = [
 'nbsphinx.localfile',
 'nbsphinx.gallery',
 'nbsphinx.thumbnail',
 'nbsphinx.notebooktitle',
 'nbsphinx.ipywidgets',
]

nbsphinx Configuration Values

nbsphinx_allow_errors

If True, the build process is continued even if an exception occurs.

See Ignoring Errors.

nbsphinx_assume_equations

If False, do not force loading MathJax on HTML pages generated from notebooks.

nbsphinx_codecell_lexer

Default Pygments lexer for syntax highlighting in code cells. If available, this information is taken from the notebook metadata instead.

nbsphinx_custom_formats

See Custom Notebook Formats.

nbsphinx_epilog

See Prolog and Epilog.

nbsphinx_execute

Whether to execute notebooks before conversion or not. Possible values: 'always', 'never', 'auto' (default).

See Explicitly Dis-/Enabling Notebook Execution.

nbsphinx_execute_arguments

Kernel arguments used when executing notebooks.

See Configuring the Kernels.

nbsphinx_input_prompt

Input prompt for code cells. %s is replaced by the execution count.

To get a prompt similar to the Classic Notebook, use

nbsphinx_input_prompt = 'In [%s]:'

nbsphinx_kernel_name

Use a different kernel than stored in the notebook metadata, e.g.:

nbsphinx_kernel_name = 'python3'

See Configuring the Kernels.

nbsphinx_output_prompt

Output prompt for code cells. %s is replaced by the execution count.

To get a prompt similar to the Classic Notebook, use

nbsphinx_output_prompt = 'Out[%s]:'

nbsphinx_prolog

See Prolog and Epilog.

nbsphinx_prompt_width

Width of input/output prompts (HTML only).

If a prompt is wider than that, it protrudes into the left margin.

Any CSS length can be specified.

nbsphinx_requirejs_options

Options for loading RequireJS. See nbsphinx_requirejs_path.

nbsphinx_requirejs_path

URL or local path to override the default URL for RequireJS [https://requirejs.org/].

If you use a local file, it should be located in a directory listed in html_static_path [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_static_path].

Set to empty string to disable loading RequireJS.

nbsphinx_responsive_width

If the browser window is narrower than this, input/output prompts are on separate lines (HTML only).

Any CSS length can be specified.

nbsphinx_thumbnails

A dictionary mapping from a document name (i.e. source file without suffix but with subdirectories) – optionally containing wildcards – to a thumbnail path to be used in a thumbnail gallery. Thumbnails specified in notebooks will override those provided in this dictionary.

See Specifying Thumbnails.

nbsphinx_timeout

Controls when a cell will time out. The timeout is given in seconds. Given -1, cells will never time out, which is also the default.

See Cell Execution Timeout.

nbsphinx_widgets_options

Options for loading Jupyter widgets resources. See nbsphinx_widgets_path.

nbsphinx_widgets_path

URL or local path to override the default URL for Jupyter widgets resources. See Interactive Widgets (HTML only).

If you use a local file, it should be located in a directory listed in html_static_path [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_static_path].

For loading the widgets resources, RequireJS is needed, see nbsphinx_requirejs_path.

If nbsphinx_widgets_path is not specified, widgets resources are only loaded if at least one notebook actually uses widgets. If you are loading the relevant JavaScript code by some other means already, you can set this option to the empty string to avoid loading it a second time.

Markdown Cells

We can use emphasis, boldface, preformatted text.

It looks like strike-out text is not supported: [STRIKEOUT:strikethrough].

	Red

	Green

	Blue

Note: JupyterLab and JupyterNotebook uses a different Markdown parser than nbsphinx (which currently uses Pandoc). In case that your Bulletpoints do render in the notebook and do not render with nbsphinx, please add one blank line before the bulletpoints. ***

	One

	Two

	Three

Arbitrary Unicode characters should be supported, e.g. łßō. Note, however, that this only works if your HTML browser and your LaTeX processor provide the appropriate fonts.

Equations

Inline equations like \(\text{e}^{i\pi} = -1\) can be created by putting a LaTeX expression between two dollar signs, like this: $\text{e}^{i\pi} = -1$.

Note

Avoid leading and trailing spaces around math expressions, otherwise errors like the following will occur when Sphinx is running:

ERROR: Unknown interpreted text role "raw-latex".

See also the pandoc docs [https://pandoc.org/MANUAL.html#math]:

Anything between two $ characters will be treated as TeX math. The opening $ must have a non-space character immediately to its right, while the closing $ must have a non-space character immediately to its left, and must not be followed immediately by a digit.

Equations can also be displayed on their own line like this: \begin{equation}
\int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0).
\end{equation}

This can be done by simply using one of the LaTeX math environments, like so:

\begin{equation}
\int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)
\end{equation}

Note

For equations to be shown in HTML output, you have to specify a math extension [https://www.sphinx-doc.org/en/master/usage/extensions/math.html] in your extensions setting, e.g.:

extensions = [
 'nbsphinx',
 'sphinx.ext.mathjax',
 # ... other useful extensions ...
]

Automatic Equation Numbering

This is not automatically enabled in Jupyter notebooks, but you can install a notebook extension in order to enable equation numbering: https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/equation-numbering/readme.html.

Automatic Equation Numbering is enabled on https://nbviewer.jupyter.org/, see e.g. the latest version of this very notebook at the link https://nbviewer.jupyter.org/github/spatialaudio/nbsphinx/blob/master/doc/markdown-cells.ipynb#Automatic-Equation-Numbering.

When using nbsphinx, you can use the following mathjax3_config setting in your conf.py file to enable automatic equation numbering in HTML output.

mathjax3_config = {
 'tex': {'tags': 'ams', 'useLabelIds': True},
}

This works for Sphinx version 4 (and higher), which uses MathJax version 3. For older Sphinx versions, the corresponding configuration looks like this:

mathjax_config = {
 'TeX': {'equationNumbers': {'autoNumber': 'AMS', 'useLabelIds': True}},
}

In LaTeX output, the equations are numbered by default.

You can use \label{...} to give a unique label to an equation:

\begin{equation}
\phi = \frac{1 + \sqrt{5}}{2}
\label{golden-mean}
\end{equation}

\begin{equation}
\phi = \frac{1 + \sqrt{5}}{2}
\label{golden-mean}
\end{equation}

If automatic equation numbering is enabled, you can later reference that equation using its label. You can use \eqref{golden-mean} for a reference with parentheses: \eqref{golden-mean}, or \ref{golden-mean} for a reference without them: \ref{golden-mean}.

In HTML output, these equation references only work for equations within a single HTML page. In LaTeX output, equations from other notebooks can be referenced, e.g. \eqref{fibonacci-recurrence}.

Manual Equation Numbering

If you prefer to assign equation numbers (or some kind of names) manually, you can do so with \tag{...}:

\begin{equation}
a^2 + b^2 = c^2
\tag{99.4}
\label{pythagoras}
\end{equation}

\begin{equation}
a^2 + b^2 = c^2
\tag{99.4}
\label{pythagoras}
\end{equation}

The above equation has the number \ref{pythagoras}.

Citations

According to https://nbconvert.readthedocs.io/en/latest/latex_citations.html, nbconvert supports citations using a special HTML-based syntax. nbsphinx supports the same syntax.

Example: [KRKP+16].

<cite data-cite="kluyver2016jupyter">Kluyver et al. (2016)</cite>

You don’t actually have to use <cite>, any inline HTML tag can be used, e.g. : [PGH11].

<strong data-cite="perez2011python">Python: An Ecosystem for Scientific Computing

You’ll also have to define a list of references, see the section about references.

There is also a Notebook extension which may or may not be useful: https://github.com/takluyver/cite2c.

Footnote citations

Since version 2.0.0 of sphinxcontrib-bibtex, footnote citations [https://sphinxcontrib-bibtex.readthedocs.io/en/latest/usage.html#role-footcite] are possible. This generates footnotes for all foot-citations up to the point of the bibliography directive, which is typically placed at the end of the source file.

Depending on whether the documentation is rendered into HTML or into LaTeX/PDF, the citations are either placed into a bibliography as ordinary citations (HTML output) or placed into the footnotes of the citation’s respective page (PDF).

Example: [1].

<cite data-footcite="perez2011python">Pérez et al. (2011)</cite>

As footnote references are restricted to their own Jupyter notebook or other source file, a raw nbconvert cell of reST format (see the section about raw cells) can be added to the notebook, containing the

.. footbibliography::

directive.

[1]
Fernando Pérez, Brian E. Granger, and John D. Hunter. Python: an ecosystem for scientific computing. Computing in Science Engineering, 13(2):13–21, 2011. doi:10.1109/MCSE.2010.119 [https://doi.org/10.1109/MCSE.2010.119].

Alternatively, one can use the nbsphinx epilog by setting it to, e.g.,

nbsphinx_epilog = r"""
.. footbibliography::
"""

Code

We can also write code with nice syntax highlighting:

print("Hello, world!")

Tables

	A

	B

	A and B

	False

	False

	False

	True

	False

	False

	False

	True

	False

	True

	True

	True

Images

Local image: [image: Jupyter notebook icon]

![Jupyter notebook icon](images/notebook_icon.png)

Remote image: [image: Python logo (remote)]

![Python logo (remote)](https://www.python.org/static/img/python-logo-large.png)

Using the HTML tag

The aforementioned Markdown syntax for including images doesn’t allow specifying the image size.

If you want to control the size of the included image, you can use the HTML [https://www.w3.org/TR/html52/semantics-embedded-content.html#the-img-element] element with the width attribute like this:

[image: Jupyter notebook icon]

In addition to the src, alt, width and height attributes, you can also use the class attribute, which is simply forwarded to the HTML output (and ignored in LaTeX output). All other attributes are ignored.

SVG support for LaTeX

LaTeX doesn’t support SVG images, but there are Sphinx extensions that can be used for automatically converting SVG images for inclusion in LaTeX output.

Just include one of the following options in the list of extensions in your conf.py file.

	'sphinxcontrib.inkscapeconverter' or 'sphinxcontrib.rsvgconverter': See https://github.com/missinglinkelectronics/sphinxcontrib-svg2pdfconverter for installation instructions.

The external programs inkscape or rsvg-convert (Debian/Ubuntu package librsvg2-bin; conda package librsvg) are needed, respectively.

	'sphinx.ext.imgconverter': This is a built-in Sphinx extension, see https://www.sphinx-doc.org/en/master/usage/extensions/imgconverter.html.

This needs the external program convert from ImageMagick.

The disadvantage of this extension is that SVGs are converted to bitmap images.

If one of those extensions is installed, SVG images can be used even for LaTeX output:

[image: Python logo]

![Python logo](images/python_logo.svg)

Remote SVG images can also be used (and will be shown in the LaTeX output):

[image: Jupyter logo]

![Jupyter logo](https://jupyter.org/assets/homepage/main-logo.svg)

Cell Attachments

Images can also be embedded in the notebook itself. Just drag an image file into the Markdown cell you are just editing or copy and paste some image data from an image editor/viewer.

The generated Markdown code will look just like a “normal” image link, except that it will have an attachment: prefix:

![a stick figure](attachment:stickfigure.png)

These are cell attachments: [image: a stick figure]

[image: small Python logo]

In the Jupyter Notebook, there is a speciall “Attachments” cell toolbar which you can use to see all attachments of a cell and delete them, if needed.

HTML Elements (HTML only)

It is allowed to use plain HTML elements within Markdown cells. Those elements are passed through to the HTML output and are ignored for the LaTeX output. Below are a few examples.

HTML5 audio [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio] elements can be created like this:

<audio src="https://example.org/audio.ogg" controls>alternative text</audio>

Example:

 Code Cells

Code Cells

Code, Output, Streams

An empty code cell:

[]:

Two empty lines:

[]:

Leading/trailing empty lines:

[1]:

2 empty lines before, 1 after

A simple output:

[2]:

6 * 7

[2]:

42

The standard output stream:

[3]:

print('Hello, world!')

Hello, world!

Normal output + standard output

[4]:

print('Hello, world!')
6 * 7

Hello, world!

[4]:

42

The standard error stream is highlighted and displayed just below the code cell. The standard output stream comes afterwards (with no special highlighting). Finally, the “normal” output is displayed.

[5]:

import sys

print("I'll appear on the standard error stream", file=sys.stderr)
print("I'll appear on the standard output stream")
"I'm the 'normal' output"

I'll appear on the standard output stream

I'll appear on the standard error stream

[5]:

"I'm the 'normal' output"

Note

Using the IPython kernel, the order is actually mixed up, see https://github.com/ipython/ipykernel/issues/280.

Cell Magics

IPython can handle code in other languages by means of cell magics [https://ipython.readthedocs.io/en/stable/interactive/magics.html#cell-magics]:

[6]:

%%bash
for i in 1 2 3
do
 echo $i
done

1
2
3

Special Display Formats

See IPython example notebook [https://nbviewer.jupyter.org/github/ipython/ipython/blob/main/examples/IPython%20Kernel/Rich%20Output.ipynb].

Local Image Files

[7]:

from IPython.display import Image
i = Image(filename='images/notebook_icon.png')
i

[7]:

[image: _images/code-cells_20_0.png]

[8]:

display(i)

[image: _images/code-cells_21_0.png]

See also SVG support for LaTeX.

[9]:

from IPython.display import SVG
SVG(filename='images/python_logo.svg')

[9]:

[image: _images/code-cells_23_0.svg]

Image URLs

[10]:

Image(url='https://www.python.org/static/img/python-logo-large.png')

[10]:

[11]:

Image(url='https://www.python.org/static/img/python-logo-large.png', embed=True)

[11]:

[image: _images/code-cells_26_0.png]

[12]:

Image(url='https://jupyter.org/assets/homepage/main-logo.svg')

[12]:

Math

[13]:

from IPython.display import Math
eq = Math(r'\int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)')
eq

[13]:

$\displaystyle \int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)$

[14]:

display(eq)

$\displaystyle \int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)$

[15]:

from IPython.display import Latex
Latex(r'This is a \LaTeX{} equation: $a^2 + b^2 = c^2$')

[15]:

This is a \LaTeX{} equation: $a^2 + b^2 = c^2$

[16]:

%%latex
\begin{equation}
\int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)
\end{equation}

\begin{equation}
\int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)
\end{equation}

Plots

Make sure to use at least version 0.1.6 of the matplotlib-inline package (which is an automatic dependency of the ipython package).

By default, the plots created with the “inline” backend have the wrong size. More specifically, PNG plots (the default) will be slightly larger than SVG and PDF plots.

This can be fixed easily by creating a file named matplotlibrc (in the directory where your Jupyter notebooks live, e.g. in this directory: matplotlibrc) and adding the following line:

figure.dpi: 96

If you are using Git to manage your files, don’t forget to commit this local configuration file to your repository. Different directories can have different local configurations. If a given configuration should apply to multiple directories, symbolic links can be created in each directory.

For more details, see Default Values for Matplotlib’s “inline” Backend [https://nbviewer.jupyter.org/github/mgeier/python-audio/blob/master/plotting/matplotlib-inline-defaults.ipynb].

By default, plots are generated in the PNG format. In most cases, it looks better if SVG plots are used for HTML output and PDF plots are used for LaTeX/PDF. This can be achieved by setting nbsphinx_execute_arguments in your conf.py file like this:

nbsphinx_execute_arguments = [
 "--InlineBackend.figure_formats={'svg', 'pdf'}",
]

In the following example, nbsphinx should use an SVG image in the HTML output and a PDF image for LaTeX/PDF output (other Jupyter clients like JupyterLab will still show the default PNG format).

[17]:

import matplotlib.pyplot as plt

[18]:

fig, ax = plt.subplots(figsize=[6, 3])
ax.plot([4, 9, 7, 20, 6, 33, 13, 23, 16, 62, 8]);

[image: _images/code-cells_38_0.svg]

For comparison, this is how it would look in PNG format …

[19]:

%config InlineBackend.figure_formats = ['png']

[20]:

fig

[20]:

[image: _images/code-cells_41_0.png]

… and in 'png2x' (a.k.a. 'retina') format:

[21]:

%config InlineBackend.figure_formats = ['png2x']

[22]:

fig

[22]:

[image: _images/code-cells_44_0.png]

Pandas Dataframes

Pandas dataframes [https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe] should be displayed as nicely formatted HTML tables (if you are using HTML output).

[23]:

import numpy as np
import pandas as pd

[24]:

df = pd.DataFrame(np.random.randint(0, 100, size=[5, 4]),
 columns=['a', 'b', 'c', 'd'])
df

[24]:

 Raw Cells

Raw Cells

Any Jupyter Notebook consists of cells of three different types: Code cells, Markdown cells , and/or Raw cells. While most Jupyter Notebook users are very familiar with Code cells and Markdown cells in Jupyter Notebooks, Raw cells are less frequently used. For Jupyter Notebook, they are introduced here [https://jupyter-notebook.readthedocs.io/en/stable/notebook.html?highlight=raw#raw-cells] and for JupyterLab
here [https://jupyterlab.readthedocs.io/en/stable/extension/notebook.html?highlight=raw#model]. The Raw cells are also sometimes referred to as Raw NBConvert cells in the context of nbconvert [https://nbconvert.readthedocs.io/en/latest/architecture.html?highlight=raw#a-detailed-pipeline-exploration]. The Raw cell type can be used to render different code formats into HTML or LaTeX by Sphinx. This information is stored in the notebook metadata and converted appropriately.

Usage

Raw cells are created differently depending on the user interface.

Jupyter Notebook

To select a desired format from within Jupyter Notebook, select the cell containing your special code and choose options from the following dropdown menus:

	Select “Raw NBConvert” in the Menu Toolbar (just below the two menus “Widgets” and “Help”).

	Click on the “Raw NBConvert Format” dropdown menu within the cell and select “reST”.

[image: Steps for converting cells to Raw formats in Jupyter Notebook]

JupyterLab

To select a desired format from within JupyterLab, first activate the right sidebar by clicking on View in the Menu Toolbar. Then you ensure that in front of Show Right Sidebar there is a tick. Once the Right Sidebar is shown, you are ready to go.

Now you select the cell containing your special code and choose options from the following dropdown menus:

	Select “Raw” in the Notebook Toolbar (just next to the symbols that run cells or reload the kernel).

	Click on “Raw NBConvert Format” in the Right Sidebar and select “reStructured Text”.

[image: Steps for converting cells to Raw formats in JupyterLab]

Available Raw Cell Formats

The following examples show how different Jupyter cell formats are rendered by Sphinx.

None

By default (if no cell format is selected), the cell content is included (without any conversion) in both the HTML and LaTeX output. This is typically not useful at all.

"I'm a raw cell with no format."

reST

Raw cells in “reST” format are interpreted as reStructuredText and parsed by Sphinx. Thus, you can e.g. use its cross-referencing abilities [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#cross-referencing-python-objects] for automatically creating/updating links to the definition of modules, classes, functions, and similar. The result is visible in both HTML and LaTeX output.

“I’m a raw cell in reST [https://www.sphinx-doc.org/rest.html] format.”

I can contain Sphinx roles such as a link to example_python_function().

Markdown

Raw cells in “Markdown” format are interpreted as Markdown, and the result is included in both HTML and LaTeX output. Since the Jupyter Notebook also supports normal Markdown cells, this might not be useful at all.

“I’m a raw cell in Markdown [https://daringfireball.net/projects/markdown/] format.”

HTML

Raw cells in “HTML” format are only visible in HTML output. This option might not be very useful, since raw HTML code is also allowed within normal Markdown cells.

 Hidden Cells

Hidden Cells

You can remove cells from the HTML/LaTeX output by adding this to the cell metadata:

"nbsphinx": "hidden"

Hidden cells are still executed but removed afterwards.

For example, the following hidden cell defines the variable answer.

This is the cell after the hidden cell. Although the previous cell is not visible, its result is still available:

[2]:

answer

[2]:

42

Don’t overuse this, because it may make it harder to follow what’s going on in your notebook.

Also Markdown cells can be hidden. The following cell is hidden.

This is the cell after the hidden cell.

 Controlling Notebook Execution

Controlling Notebook Execution

Notebooks with no outputs are automatically executed during the Sphinx build process. If, however, there is at least one output cell present, the notebook is not evaluated and included as is.

The following notebooks show how this default behavior can be used and customized.

	Pre-Executing Notebooks
	Long-Running Cells

	Rare Libraries

	Exceptions

	Client-specific Outputs

	Interactive Input

	Explicitly Dis-/Enabling Notebook Execution

	Ignoring Errors

	Ignoring Errors on a Per-Cell Basis

	Configuring Kernels
	Kernel Name

	Kernel Arguments

	Environment Variables

	Cell Execution Timeout

 Pre-Executing Notebooks

Pre-Executing Notebooks

Automatically executing notebooks during the Sphinx build process is an important feature of nbsphinx. However, there are a few use cases where pre-executing a notebook and storing the outputs might be preferable. Storing any output will, by default, stop nbsphinx from executing the notebook.

Long-Running Cells

If you are doing some very time-consuming computations, it might not be feasible to re-execute the notebook every time you build your Sphinx documentation.

So just do it once – when you happen to have the time – and then just keep the output.

[1]:

import time

[2]:

%time time.sleep(60 * 60)
6 * 7

CPU times: user 160 ms, sys: 56 ms, total: 216 ms
Wall time: 1h 1s

[2]:

42

Rare Libraries

You might have created results with a library that’s hard to install and therefore you have only managed to install it on one very old computer in the basement, so you probably cannot run this whenever you build your Sphinx docs.

[3]:

from a_very_rare_library import calculate_the_answer

[4]:

calculate_the_answer()

[4]:

42

Exceptions

If an exception is raised during the Sphinx build process, it is stopped (the build process, not the exception!). If you want to show to your audience how an exception looks like, you have two choices:

	Allow errors – either generally or on a per-notebook or per-cell basis – see Ignoring Errors (per cell).

	Execute the notebook beforehand and save the results, like it’s done in this example notebook:

[5]:

1 / 0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-5-b710d87c980c> in <module>()
----> 1 1 / 0

ZeroDivisionError: division by zero

Client-specific Outputs

When nbsphinx executes notebooks, it uses the nbconvert module to do so. Certain Jupyter clients might produce output that differs from what nbconvert would produce. To preserve those original outputs, the notebook has to be executed and saved before running Sphinx.

For example, the JupyterLab help system shows the help text as cell outputs, while executing with nbconvert doesn’t produce any output.

[6]:

sorted?

Signature: sorted(iterable, /, *, key=None, reverse=False)
Docstring:
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.
Type: builtin_function_or_method

Interactive Input

If your code asks for user input, it probably doesn’t work when executed by Sphinx/nbsphinx. You’ll probably get an error like this:

StdinNotImplementedError: raw_input was called, but this frontend does not support input requests.

In this case, you can run the notebook interactively, provide the desired inputs and then save the notebook including its cell outputs.

[7]:

name = input('What... is your name?')
quest = input('What... is your quest?')
color = input('What... is your favorite color?')

What... is your name? Sir Lancelot of Camelot
What... is your quest? To seek the Holy Grail
What... is your favorite color? Blue

 Explicitly Dis-/Enabling Notebook Execution

Explicitly Dis-/Enabling Notebook Execution

If you want to include a notebook without outputs and yet don’t want nbsphinx to execute it for you, you can explicitly disable this feature.

You can do this globally by setting the following option in conf.py:

nbsphinx_execute = 'never'

Or on a per-notebook basis by adding this to the notebook’s JSON metadata:

"nbsphinx": {
 "execute": "never"
},

There are three possible settings, "always", "auto" and "never". By default (= "auto"), notebooks with no outputs are executed and notebooks with at least one output are not. As always, per-notebook settings take precedence over the settings in conf.py.

This very notebook has its metadata set to "never", therefore the following cell is not executed:

[]:

6 * 7

 Ignoring Errors

Ignoring Errors

Normally, if an exception is raised while executing a notebook, the Sphinx build process is stopped immediately.

If a notebook contains errors on purpose (or if you are too lazy to fix them right now), you have four options:

	Manually execute the notebook in question and save the results, see the pre-executed example notebook.

	Allow errors in all notebooks by setting this option in conf.py:

nbsphinx_allow_errors = True

	Allow errors on a per-notebook basis by adding this to the notebook’s JSON metadata:

"nbsphinx": {
 "allow_errors": true
},

	Allow errors on a per-cell basis using the raises-exception tag, see Ignoring Errors on a Cell-by-Cell Basis.

This very notebook is an example for the third option. The results of the following code cells are not stored within the notebook, therefore it is executed during the Sphinx build process. Since the above-mentioned allow_errors flag is set in this notebook’s metadata, all cells are executed although most of them cause an exception.

[1]:

nonsense

NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 nonsense

NameError: name 'nonsense' is not defined

[2]:

42 / 0

ZeroDivisionError Traceback (most recent call last)
Cell In[2], line 1
----> 1 42 / 0

ZeroDivisionError: division by zero

[3]:

6 * 7

[3]:

42

 Ignoring Errors on a Per-Cell Basis

Ignoring Errors on a Per-Cell Basis

Instead of ignoring errors for all notebooks or for some selected notebooks (see the previous notebook), you can be more fine-grained and just allow errors on certain code cells by tagging them with the raises-exception tag.

[1]:

'no problem'

[1]:

'no problem'

The following code cell has the raises-exception tag.

[2]:

problem

NameError Traceback (most recent call last)
Cell In[2], line 1
----> 1 problem

NameError: name 'problem' is not defined

The following code cell is executed even though the previous cell raised an exception.

[3]:

'no problem'

[3]:

'no problem'

Note

The behavior of the raises-exception tag doesn’t match its name. While it does allow exceptions, it does not check if an exception is actually raised!

This will hopefully be fixed at some point, see https://github.com/jupyter/nbconvert/issues/730.

 Configuring the Kernels

Configuring the Kernels

Kernel Name

If we have multiple kernels installed, we can choose to override the kernel saved in the notebook using nbsphinx_kernel_name:

nbsphinx_kernel_name = 'python-upstream-dev'

which uses the kernel named python-upstream-dev instead of the kernel name stored in the notebook.

Kernel Arguments

We can pass arguments to the kernel by using nbsphinx_execute_arguments, for example to set plot options:

nbsphinx_execute_arguments = [
 "--InlineBackend.figure_formats={'svg', 'pdf'}",
]

Environment Variables

The contents of os.environ after the execution of conf.py will be passed as environment variables to the kernel. As an example, MY_DUMMY_VARIABLE has been set in conf.py like this:

import os
os.environ['MY_DUMMY_VARIABLE'] = 'Hello from conf.py!'

… and it can be checked in the notebook like this:

[1]:

import os
os.environ['MY_DUMMY_VARIABLE']

[1]:

'Hello from conf.py!'

This is useful if we want to edit PYTHONPATH in order to compile the documentation without installing the project:

import os

src = os.path.abspath('../src')
os.environ['PYTHONPATH'] = src

If you are using https://mybinder.org/ and you want to define environment variables, you should create a file .binder/start in your repository (see Binder docs [https://mybinder.readthedocs.io/en/latest/using/config_files.html#start-run-code-before-the-user-sessions-starts]) containing definitions like this:

#!/bin/bash
export MY_DUMMY_VARIABLE="Hello from .binder/start!"
exec "$@"

 Cell Execution Timeout

Cell Execution Timeout

By default, code cells will be executed until they are finished, even if that takes a very long time. In some cases they might never finish.

If you would like to only use a finite amount of time per cell, you can choose a timeout length for all notebooks by setting the following option in conf.py:

nbsphinx_timeout = 60

Or change the timeout length on a per-notebook basis by adding this to the notebook’s JSON metadata:

"nbsphinx": {
 "timeout": 60
},

The timeout is given in seconds, use -1 to disable the timeout (which is the default).

Alternatively, you can manually execute the notebook in question and save the results, see the pre-executed example notebook.

 Prolog and Epilog

Prolog and Epilog

When including notebooks in your Sphinx documentation, you can choose to add some generic content before and after each notebook. This can be done with the configuration values nbsphinx_prolog and nbsphinx_epilog in the file conf.py.

The prolog and epilog strings can hold arbitrary reST [https://www.sphinx-doc.org/rest.html] markup. Particularly, the only [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-only] and raw [https://docutils.sourceforge.io/docs/ref/rst/directives.html#raw-data-pass-through] directives can be used to have different content for HTML and LaTeX output.

Those strings are also processed by the Jinja2 [https://jinja.palletsprojects.com/] templating engine. This means you can run Python-like code within those strings. You have access to the current Sphinx build environment [https://www.sphinx-doc.org/en/master/extdev/envapi.html] via the variable env. Most notably, you can get the file name of the current notebook with

{{ env.doc2path(env.docname, base=None) }}

Have a look at the Jinja2 template documentation [https://jinja.palletsprojects.com/templates/] for more information.

Warning

If you use invalid syntax, you might get an error like this:

jinja2.exceptions.TemplateSyntaxError: expected token ':', got '}'

This is especially prone to happen when using raw LaTeX, with its abundance of braces. To avoid clashing braces you can try to insert additional spaces or LaTeX macros that don’t have a visible effect, like e.g. \strut{}. For example, you can avoid three consecutive opening braces with something like that:

\texttt{\strut{}{{ env.doc2path(env.docname, base=None) }}}

NB: The three consecutive closing braces in this example are not problematic.

An alternative work-around would be to surround LaTeX braces with Jinja braces like this:

{{ '{' }}

The string within will not be touched by Jinja.

Another special Jinja syntax is {%, which is also often used in fancy TeX/LaTeX code. A work-around for this situation would be to use

{{ '{%' }}

Examples

You can include a simple static string, using reST [https://www.sphinx-doc.org/rest.html] markup if you like:

nbsphinx_epilog = """

Generated by nbsphinx_ from a Jupyter_ notebook.

.. _nbsphinx: https://nbsphinx.readthedocs.io/
.. _Jupyter: https://jupyter.org/
"""

Using some additional Jinja2 markup and the information from the env variable, you can create URLs that point to the current notebook file, but located on some other server:

nbsphinx_prolog = """
Go there: https://example.org/notebooks/{{ env.doc2path(env.docname, base=None) }}

"""

You can also use separate content for HTML and LaTeX output, e.g.:

nbsphinx_prolog = r"""
{% set docname = env.doc2path(env.docname, base=None) %}

.. only:: html

 Go there: https://example.org/notebooks/{{ docname }}

.. raw:: latex

 \nbsphinxstartnotebook{The following section was created from
 \texttt{\strut{}{{ docname }}}:}
"""

nbsphinx_epilog = r"""
.. raw:: latex

 \nbsphinxstopnotebook{\hfill End of notebook.}
"""

Note the use of the \nbsphinxstartnotebook and \nbsphinxstopnotebook commands. Those make sure there is not too much space between the “prolog” and the beginning of the notebook and, respectively, between the end of the notebook and the “epilog”. They also avoid page breaks, in order for the “prolog”/”epilog” not to end up on the page before/after the notebook.

For a more involved example for different HTML and LaTeX versions, see the file conf.py of the nbsphinx documentation.

 Custom Notebook Formats

 This page was generated from
 doc/custom-formats.pct.py.
 Interactive online version:
 [image: Binder badge]

 Notebooks in Sub-Directories

Notebooks in Sub-Directories

You can organize your notebooks in subdirectories and nbsphinx will take care that relative links to other notebooks, images and other files still work.

Let’s see if links to local images work: [image: Jupyter notebook icon]

[1]:

from IPython.display import Image
Image(filename='../images/notebook_icon.png')

[1]:

[image: ../_images/subdir_a-notebook-in-a-subdir_2_0.png]

Warning

There may be problems with images in output cells if your source directory contains symbolic links, see issue #49 [https://github.com/spatialaudio/nbsphinx/issues/49].

A link to a notebook in the same sub-directory: link.

A link to a notebook in the parent directory: link.

A link to a local file: link.

A random equation: \begin{equation}
F_n = F_{n-1} + F_{n-2}
\tag{08.15}
\label{fibonacci-recurrence}
\end{equation}

A Sub-Section

This is just for testing inter-notebook links, see this section.

That’s a “Strange” Section

This is for testing links to a section title containing quotes.

 Creating Thumbnail Galleries

Creating Thumbnail Galleries

Inspired by Sphinx-Gallery [https://sphinx-gallery.github.io/], you can create thumbnail galleries from a list of Jupyter notebooks (or other Sphinx source files).

nbsphinx provides CSS styles for galleries, but like all styles you can tweak them with your own CSS files loaded via html_css_files [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_css_files]. If you want to disable all the original styling, you can create a file named nbsphinx-gallery.css somewhere in your html_static_path [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_static_path], which will replace the original CSS file
(adding it to html_css_files is not necessary in this case, because it is automatically added by nbsphinx).

The following sections present two different ways of creating thumbnail galleries in Jupyter notebooks and show how thumbnail images can be selected. Thumbnail galleries can also be created in reStructuredText files.

	Gallery With Nested Documents
	Last Image Is Used by Default

	Using a Cell Tag to Select a Thumbnail

	Using Cell Metadata to Select a Thumbnail and Provide a Tooltip

	Choosing from Multiple Outputs

	No Thumbnail Available

	Specifying a Thumbnail File

	Gallery With Links (HTML only)

 Gallery With Nested Documents

Gallery With Nested Documents

You can create thumbnail galleries in reST files, but you can also create such galleries in Jupyter notebooks by adding the nbsphinx-gallery cell tag or metadata, which is used just like the nbsphinx-toctree cell tag/metadata. For possible options, see the toctree notebook.

Note

In LaTeX output this behaves just like toctree, i.e. no thumbnail gallery is shown, but the linked files are included in the document.

Like with toctree you should avoid adding content after a gallery (except other toctrees and galleries) because this content would appear in the LaTeX output after the content of all included source files, which is probably not what you want.

The following cell has the nbsphinx-gallery tag, which creates a thumbnail gallery. The first section title in that cell (if available) is used as caption (unless it is already given in the metadata).

The notebooks in the following gallery describe different ways how to select which images are used as thumbnails. The notebooks are added as sub-sections under the current section, just like when using toctree. If you want to create a gallery from links to notebooks that are already included somewhere else, you can use nbsphinx-link-gallery.

This is a thumbnail gallery with sub-documents:

 [image:]

 Default Thumbnail

Default Thumbnail

By default, the last image output of a notebook will be used as its thumbnail. Without an image output, a placeholder will be used. See a notebook with no thumbnail for an example.

However, if a thumbnail is explicitly assigned by Using Cell Metadata to Select a Thumbnail, Using a Cell Tag to Select a Thumbnail or Specifying a Thumbnail File, these methods will take precedence.

[1]:

import matplotlib.pyplot as plt
import numpy as np

Although the next cell contains an image (a plot), it won’t be used as the thumbnail because it’s not the last in the notebook, and we haven’t explicitly tagged it.

[2]:

fig, ax = plt.subplots(figsize=[6, 3])
x = np.linspace(-5, 5, 50)
ax.plot(x, np.sinc(x));

[image: ../_images/gallery_default-thumbnail_4_0.svg]

But the next cell is the last containing an image in the notebook, so its last image output will be used as the thumbnail.

[3]:

display(fig)
fig, ax = plt.subplots(figsize=[6, 3])
x = np.linspace(-5, 5, 50)
ax.plot(x, -np.sinc(x), color='red');

[image: ../_images/gallery_default-thumbnail_6_0.svg]

[image: ../_images/gallery_default-thumbnail_6_1.svg]

 Using a Cell Tag to Select a Thumbnail

Using a Cell Tag to Select a Thumbnail

You can select any code cell (with appropriate output) by tagging it with the nbsphinx-thumbnail tag.

If there are multiple outputs in the selected cell, the last one is used. See Choosing from Multiple Outputs for how to select a specific output. If you want to show a tooltip, have a look at Using Cell Metadata to Select a Thumbnail.

[1]:

import matplotlib.pyplot as plt

The following cell has the nbsphinx-thumbnail tag, which will take precedence over the default of the last image in the notebook:

[2]:

fig, ax = plt.subplots(figsize=[6, 3])
ax.plot([4, 9, 7, 20, 6, 33, 13, 23, 16, 62, 8])

[2]:

[<matplotlib.lines.Line2D at 0x7f3af2209c50>]

[image: ../_images/gallery_cell-tag_4_1.svg]

Although the next cell has an image, it won’t be used as the thumbnail, due to the tag on the one above.

[3]:

fig, ax = plt.subplots(figsize=[6, 3])
ax.scatter(range(10), [0, 8, 9, 1, -8, -10, -3, 7, 10, 4])

[3]:

<matplotlib.collections.PathCollection at 0x7f3aefbc0ad0>

[image: ../_images/gallery_cell-tag_6_1.svg]

 Using Cell Metadata to Select a Thumbnail

Using Cell Metadata to Select a Thumbnail

If the nbsphinx-thumbnail cell tag is not enough, you can use cell metadata to specify more options.

The last cell in this notebook has this metadata:

{
 "nbsphinx-thumbnail": {
 "tooltip": "This tooltip message was defined in cell metadata"
 }
}

If there are multiple outputs in the selected cell, the last one is used. See Choosing from Multiple Outputs for how to select a specific output.

[1]:

import matplotlib.pyplot as plt
import numpy as np

[2]:

plt.rcParams['image.cmap'] = 'coolwarm'
plt.rcParams['image.origin'] = 'lower'

Some example data stolen from https://matplotlib.org/examples/pylab_examples/pcolor_demo.html:

[3]:

x, y = np.meshgrid(np.arange(-3, 3, 0.1), np.arange(-2, 2, 0.1))
z = (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)

[4]:

zmax = np.max(np.abs(z))

[5]:

fig, ax = plt.subplots(figsize=[5, 3.5])
ax.imshow(z, vmin=-zmax, vmax=zmax)

[5]:

<matplotlib.image.AxesImage at 0x7f1786e2b510>

[image: ../_images/gallery_cell-metadata_7_1.svg]

 Choosing from Multiple Outputs

Choosing from Multiple Outputs

By default, the last output of the selected cell is used as a thumbnail. If that’s what you want, you can simply use the nbsphinx-thumbnail cell tag.

If you want to specify one of multiple outputs, you can add a (zero-based) "output-index" to your "nbsphinx-thumbnail" cell metadata.

The following cell has this metadata, selecting the third output to be used as thumbnail in the gallery.

{
 "nbsphinx-thumbnail": {
 "output-index": 2
 }
}

[1]:

from IPython.display import Image

display(Image(url='https://jupyter.org/assets/homepage/main-logo.svg'))
print('Hello!')
display(Image(filename='../images/notebook_icon.png'))
display(Image(url='https://www.python.org/static/img/python-logo-large.png', embed=True))

Hello!

[image: ../_images/gallery_multiple-outputs_2_2.png]

[image: ../_images/gallery_multiple-outputs_2_3.png]

 A Notebook without Thumbnail

A Notebook without Thumbnail

This notebook doesn’t contain any thumbnail metadata.

It should be displayed with the default thumbnail image in the gallery.

 Specifying Thumbnails in conf.py

Specifying Thumbnails in conf.py

This notebook doesn’t contain a nbsphinx-thumbnail cell tag nor cell metadata. Instead, in the file conf.py, a thumbnail is specified (via the nbsphinx_thumbnails option), which will be used in the gallery.

The keys in the nbsphinx_thumbnails dictionary can contain wildcards, which behave very similarly to the html_sidebars [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_sidebars] option.

The thumbnail files can be local image files somewhere in the source directory, but you’ll need to create at least one link to them in order to copy them to the HTML output directory.

You can also use files from the _static directory (which contains all files in your html_static_path [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_static_path]).

If you want, you can also use files from the _images directory, which contains all notebook outputs.

To demonstrate this feature, we are creating an image file here:

[1]:

import matplotlib.pyplot as plt

[2]:

fig, ax = plt.subplots()
ax.plot([4, 8, 15, 16, 23, 42])
fig.savefig('a-local-file.png')
plt.close() # avoid plotting the figure

Please note that the previous cell doesn’t have any outputs, but it has generated a file named a-local-file.png in the notebook’s directory.

We have to create a link to this file (which is a good idea anyway): a-local-file.png.

Now we can use this file in our conf.py like this:

nbsphinx_thumbnails = {
 'gallery/thumbnail-from-conf-py': 'gallery/a-local-file.png',
}

Please note that the notebook name does not contain the .ipynb suffix.

Note that the following plot is not used as a thumbnail because the nbsphinx_thumbnails setting overrides the default behavior.

[3]:

fig, ax = plt.subplots(figsize=[6, 3])
ax.plot([4, 9, 7, 20, 6, 33, 13, 23, 16, 62, 8], 'r:');

[image: ../_images/gallery_thumbnail-from-conf-py_7_0.svg]

 Gallery With Links (HTML only)

Gallery With Links (HTML only)

Contrary to nbsphinx-gallery, the cell tag/metadata nbsphinx-link-gallery creates a gallery from notebooks (and other source) files without including them as sub-sections. Other than that, it works in a similar way, but only the options "name", "caption" and "reversed" are supported. In LaTeX output, this has no effect. The cell is ignored and nothing is added to the LaTeX document.

In reST files (and raw reST cells), the nblinkgallery directive can be used.

The following Markdown cell has the nbsphinx-link-gallery tag, which turns the contained links into a gallery and uses the first section title as caption:

This is a thumbnail gallery with links to existing documents:

 [image:]

 Using toctree In A Notebook

Using toctree In A Notebook

In Sphinx-based documentation, there is typically a file called index.rst which contains one or more toctree [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree] directives. Those can be used to pull in further source files (which themselves can contain further toctree directives).

With nbsphinx it is possible to get a similar effect within a Jupyter notebook using the nbsphinx-toctree cell tag or cell metadata. Markdown cells with nbsphinx-toctree tag/metadata are not converted like “normal” Markdown cells. Instead, they are only scanned for links to other notebooks (or *.rst files and other Sphinx source files) and those links are added to a toctree directive. External links can also be used, but they will not be visible in the LaTeX output.

If there is a section title in the selected cell, it is used as toctree caption (but it also works without a title).

Note

All other content of such a cell is ignored!

If you are satisfied with the default settings, you can simply use nbsphinx-toctree as a cell tag.

Alternatively, you can store nbsphinx-toctree cell metadata. Use …

{
 "nbsphinx-toctree": {}
}

… for the default settings, …

{
 "nbsphinx-toctree": {
 "maxdepth": 2
 }
}

… for setting the :maxdepth: option, or…

{
 "nbsphinx-toctree": {
 "hidden": true
 }
}

… for setting the :hidden: option.

Of course, multiple options can be used at the same time, e.g.

{
 "nbsphinx-toctree": {
 "maxdepth": 3,
 "numbered": true
 }
}

For more options, have a look a the Sphinx documentation [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree]. All options can be used – except :glob:, which can only be used in rst files and in raw reST cells.

Note

In HTML output, a toctree cell generates an in-line table of contents (containing links) at its position in the notebook, whereas in the LaTeX output, a new (sub-)section with the actual content is inserted at its position. All content below the toctree cell will appear after the table of contents/inserted section, respectively. If you want to use the LaTeX output, it is recommended that you don’t add further cells below a toctree cell, otherwise their content may appear at
unexpected places. Multiple toctree cells in a row should be fine, though.

The following cell is tagged with nbsphinx-toctree and contains a link to the notebook yet-another.ipynb and an external link (which will only be visible in the HTML output). It also contains a section title which will be used as toctree caption (which also will only be visible in the HTML output).

A sub-toctree

	A Notebook that’s just a “toctree” Target

	An External Link (HTML only) [https://nbsphinx.readthedocs.io/]

 Yet Another Notebook

Yet Another Notebook

This notebook is only here to show how (sub-)toctrees can be created with Markdown cell metadata. See there.

 Custom CSS

Custom CSS

If you are not satisfied with the CSS styles provided by nbsphinx and by your Sphinx theme, don’t worry, you can add your own styles easily.

For All Pages

Just create your own CSS file, e.g. my-own-style.css, and put it into the _static/ sub-directory of your source directory.

You’ll also have to set the config values html_static_path [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_static_path] and html_css_files [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_css_files] in your conf.py, e.g. like this:

html_static_path = ['_static']
html_css_files = ['my-own-style.css']

For All RST files

If you want your style to only apply to *.rst files (and not Jupyter notebooks or other source files), you can use rst_prolog [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-rst_prolog] with the raw [https://docutils.sourceforge.io/docs/ref/rst/directives.html#raw-data-pass-through] directive in your conf.py like this:

rst_prolog = """
.. raw:: html

 <style>
 h1 {
 color: fuchsia;
 }
 </style>
"""

For All Notebooks

Similarly, if you want your style to only apply to notebooks, you can use nbsphinx_prolog like this:

nbsphinx_prolog = """
.. raw:: html

 <style>
 h1 {
 color: chartreuse;
 }
 </style>
"""

For a Single Notebook

For styles that should affect only the current notebook, you can simply insert <style> tags into Markdown cells like this:

<style>
 .nbinput .prompt,
 .nboutput .prompt {
 display: none;
 }
</style>

This CSS example removes the input and output prompts from code cells, see the following cell:

[1]:

6 * 7

[1]:

42

 Normal reStructuredText Files

Normal reStructuredText Files

This is a normal RST file.

Note

Those still work!

Links to Notebooks (and Other Sphinx Source Files)

Links to Sphinx source files can be created like normal Sphinx hyperlinks [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#external-links],
just using a relative path to the local file: link.

using a relative path to the local file: link_.

.. _link: subdir/a-notebook-in-a-subdir.ipynb

If the link text has a space (or some other strange character) in it, you have
to surround it with backticks: a notebook link.

surround it with backticks: `a notebook link`_.

.. _a notebook link: subdir/a-notebook-in-a-subdir.ipynb

You can also use an anonymous hyperlink target [https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#anonymous-hyperlinks], like this: link.
If you have multiple of those, their order matters!

like this: link__.

__ subdir/a-notebook-in-a-subdir.ipynb

Finally, you can use Embedded URIs [https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#embedded-uris-and-aliases], like this
link.

like this `link <subdir/a-notebook-in-a-subdir.ipynb>`_.

Note

These links should also work on Github and in other rendered
reStructuredText pages.

Links to subsections are also possible by adding a hash sign (#) and the
section title to any of the above-mentioned link variants.
You have to replace spaces in the section titles by hyphens.
For example, see this subsection.

For example, see this subsection_.

.. _subsection: subdir/a-notebook-in-a-subdir.ipynb#A-Sub-Section

Links to Notebooks, Ye Olde Way

In addition to the way shown above, you can also create links to notebooks (and
other Sphinx source files) with
:ref: [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-ref].
This has some disadvantages:

	It is arguably a bit more clunky.

	Because :ref: is a Sphinx feature, the links don’t work on Github and
other rendered reStructuredText pages that use plain old docutils.

It also has one important advantage:

	The link text can automatically be taken from the actual section title.

A link with automatic title looks like this:
/subdir/a-notebook-in-a-subdir.ipynb.

:ref:`/subdir/a-notebook-in-a-subdir.ipynb`

But you can also provide
your own link title.

:ref:`your own link title </subdir/a-notebook-in-a-subdir.ipynb>`

However, if you want to use your own title, you are probably better off using
the method described above in
Links to Notebooks (and Other Sphinx Source Files).

Links to subsections are also possible, e.g.
/subdir/a-notebook-in-a-subdir.ipynb#A-Sub-Section
(the subsection title is used as link text) and
alternative text.

These links were created with:

:ref:`/subdir/a-notebook-in-a-subdir.ipynb#A-Sub-Section`
:ref:`alternative text </subdir/a-notebook-in-a-subdir.ipynb#A-Sub-Section>`

Note

	The paths have to be relative to the top source directory and they have to
start with a slash (/).

	Spaces in the section title have to be replaced by hyphens!

Sphinx Directives for Info/Warning Boxes

Warning

This is an experimental feature!
Its usage may change in the future or it might disappear completely, so
don’t use it for now.

With a bit of luck, it will be possible (some time in the future) to create
info/warning boxes in Markdown cells, see
https://github.com/jupyter/notebook/issues/1292.
If this ever happens, nbsphinx will provide directives for creating such
boxes.
For now, there are two directives available: nbinfo and nbwarning.
This is how an info box looks like:

Note

This is an info box.

It may include nested formatting, even another info/warning box:

Warning: You should probably not use nested boxes!

Domain Objects

	
example_python_function(foo)

	This is just for testing domain object links.

	Parameters:

	foo (str [https://docs.python.org/3/library/stdtypes.html#str]) – Example string parameter

See also

/markdown-cells.ipynb#Links-to-Domain-Objects

References

There are different ways of handling references, for example you could use the
standard Sphinx citations [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#citations], but it might be more practical to use the
sphinxcontrib.bibtex [https://sphinxcontrib-bibtex.readthedocs.io/] extension.

After installing the sphinxcontrib.bibtex [https://sphinxcontrib-bibtex.readthedocs.io/] extension, you have to enable it in
your conf.py and select the BibTeX file(s) you want to use:

extensions = [
 'nbsphinx',
 'sphinxcontrib.bibtex',
 # Probably more extensions here ...
]

bibtex_bibfiles = ['my-references.bib']

Afterwards all the references defined in the bibliography file(s) can be used
throughout the Jupyter notebooks and other source files as detailed in the following.

Citations

You can create citations like [PGH11]:

:cite:`perez2011python`

You can create similar citations in Jupyter notebooks with a special HTML
syntax, see the section about
citations in Markdown cells.

You can create a list of references in any reStructuredText file
(or reST cell in a notebook) like this:

.. bibliography::

For an example, see the file doc/references.rst.

Footnote citations

With a sphinxcontrib.bibtex [https://sphinxcontrib-bibtex.readthedocs.io/] version of >= 2.0.0 it is
possible to create footnote bibliographies with footnote
citations like [1].

:footcite:`perez2011python`

Also footnote citations can be used within Jupyter notebooks with a special HTML syntax,
see the section about
footnote citations in Markdown cells.
Footnote citations are restricted to their own source file and the assembly of the
bibliography is (analogously to normal citations) invoked with the

.. footbibliography::

directive. For example, a footnote bibliography might
look like this (in HTML output):

[1]
Fernando Pérez, Brian E. Granger, and John D. Hunter. Python: an ecosystem for scientific computing. Computing in Science Engineering, 13(2):13–21, 2011. doi:10.1109/MCSE.2010.119 [https://doi.org/10.1109/MCSE.2010.119].

In the LaTeX/PDF output, there is no list of references appearing right
here. Instead, the footnote citations are placed into the footnotes of
their respective pages.

Thumbnail Link Galleries (HTML only)

In some case it is desired to create thumbnail links to existing notebooks,
already included in a toctree. This can be used e.g. to link to a subset
of notebooks from API documentation to highlight the use of some functionality.
For this there is a dedicated nblinkgallery directive.

The following example gallery was created using:

.. nblinkgallery::
 :caption: A few links
 :name: rst-link-gallery

 gallery/multiple-outputs
 gallery/no-thumbnail
 gallery/cell-metadata
 orphan

A few links

 [image:]

 Dummy Notebook 1 for Gallery

Dummy Notebook 1 for Gallery

This is a dummy file just to fill the gallery in the reST file.

The thumbnail image is assigned in conf.py.

 Dummy Notebook 2 for Gallery

 This page was generated from
 doc/gallery/due-rst.pct.py.
 Interactive online version:
 [image: Binder badge]

 Using Markdown Files

Using Markdown Files

Sphinx on its own doesn’t know how to handle Markdown files, but there are extensions that enable their usage as Sphinx source files. For an example, see the Sphinx documentation [https://www.sphinx-doc.org/en/master/usage/markdown.html].

Alternatively, when using nbsphinx it is also possible to use Markdown files via custom notebook formats.

You only need to install the jupytext [https://jupytext.readthedocs.io/] package and add a configuration setting to conf.py, which can be used to select one of several Markdown flavors supported by jupytext [https://jupytext.readthedocs.io/en/latest/formats.html#markdown-formats] (here we are using R Markdown):

nbsphinx_custom_formats = {
 '.md': ['jupytext.reads', {'fmt': 'Rmd'}],
}

This very page was generated from a Markdown file using these settings.

Links to Notebooks (and Other Sphinx Source Files)

Links to other Sphinx source files can be created like in Markdown cells of notebooks.

Math

Mathematical equations can be used just like in Markdown cells of notebooks.

Inline like this: \(\text{e}^{i\pi} = -1\).

Or as a separate block:

\begin{equation*}
\int\limits_{-\infty}^\infty f(x) \delta(x - x_0) dx = f(x_0)
\end{equation*}

Tables

	A

	B

	A and B

	False

	False

	False

	True

	False

	False

	False

	True

	False

	True

	True

	True

Images

[image: Jupyter notebook icon]

 External Links

External Links

nbconvert

The official conversion tool of the Jupyter project. It can be used to convert notebooks to HTML, LaTeX and many other formats.

Its --execute flag can be used to automatically execute notebooks before conversion.

https://nbconvert.readthedocs.io/

https://github.com/jupyter/nbconvert

RunNotebook (notebook_sphinxext.py)

Notebooks can be included in *.rst files with a custom notebook directive. Uses nbconvert to execute notebooks and to convert the result to HTML.

No LaTeX support.

https://github.com/ngoldbaum/RunNotebook

There are some forks:

	https://bitbucket.org/yt_analysis/yt-doc/src/default/extensions/notebook_sphinxext.py (not available anymore)

	https://github.com/matthew-brett/perrin-academy/blob/master/sphinxext/notebook_sphinxext.py

nbsite

Build a tested, sphinx-based website from notebooks.

https://nbsite.holoviz.org/

ipypublish

A workflow for creating and editing publication ready scientific reports and presentations, from one or more Jupyter Notebooks, without leaving the browser!

https://ipypublish.readthedocs.io/

https://github.com/chrisjsewell/ipypublish

jupyterbook

Jupyter Book is an open source project for building beautiful, publication-quality books and documents from computational material.

https://jupyterbook.org/

https://github.com/executablebooks/jupyter-book

MyST-NB

A collection of tools for working with Jupyter Notebooks in Sphinx.

The primary tool this package provides is a Sphinx parser for ipynb files. This allows you to directly convert Jupyter Notebooks into Sphinx documents. It relies heavily on the MyST parser [https://github.com/executablebooks/MyST-Parser].

https://myst-nb.readthedocs.io/

https://github.com/executablebooks/MyST-NB

notebook-to-pdf

This Jupyter notebook extension allows you to save your notebook as a PDF.

Three new features compared to the official “save as PDF” extension:

	produce a PDF with the smallest number of page breaks,

	the original notebook is attached to the PDF; and

	this extension does not require LaTex.

https://github.com/betatim/notebook-as-pdf

nbinteract

Create interactive webpages from Jupyter Notebooks

https://www.nbinteract.com/

https://github.com/SamLau95/nbinteract

nb_pdf_template

An extended nbconvert template for LaTeX output.

https://github.com/t-makaro/nb_pdf_template

nb2plots

Notebook to reStructuredText converter which uses a modified version of the matplotlib plot directive.

https://github.com/matthew-brett/nb2plots

brole

A Sphinx role for IPython notebooks

https://github.com/matthew-brett/brole

Sphinx-Gallery

https://sphinx-gallery.readthedocs.io/

sphinx-nbexamples

https://sphinx-nbexamples.readthedocs.io/

https://github.com/Chilipp/sphinx-nbexamples

nbsphinx-link

https://github.com/vidartf/nbsphinx-link

Uses nbsphinx, but supports notebooks outside the Sphinx source directory.

See https://github.com/spatialaudio/nbsphinx/pull/33 for some limitations.

bookbook

Uses nbconvert to create a sequence of HTML or a concatenated LaTeX file from a sequence of notebooks.

https://github.com/takluyver/bookbook

jupyter-sphinx

Jupyter Sphinx is a Sphinx extension that executes embedded code in a Jupyter kernel, and embeds outputs of that code in the output document. It has support for rich output such as images, Latex math and even javascript widgets.

https://jupyter-sphinx.readthedocs.io/

https://github.com/jupyter/jupyter-sphinx

DocOnce

http://hplgit.github.io/doconce/doc/web/index.html

Converting Notebooks to reStructuredText

https://github.com/perrette/dimarray/blob/master/docs/scripts/nbconvert_to_rst.py

https://gist.github.com/hadim/16e29b5848672e2e497c (not available anymore)

https://sphinx-ipynb.readthedocs.io/

Converting reStructuredText to Notebooks

https://github.com/nthiery/rst-to-ipynb

https://github.com/QuantEcon/sphinxcontrib-jupyter

Converting Notebooks to HTML for Blog Posts

http://dongweiming.github.io/divingintoipynb_nikola/posts/nbconvert.html

https://github.com/getpelican/pelican-plugins/blob/master/liquid_tags/notebook.py

Further Posts and Issues

https://github.com/ipython/ipython/issues/4936

https://mail.scipy.org/pipermail/ipython-user/2013-December/013490.html (not available anymore)

 Contributing

Contributing

If you find bugs, errors, omissions or other things that need improvement,
please create an issue or a pull request at
https://github.com/spatialaudio/nbsphinx/.
Contributions are always welcome!

Development Installation

Make sure that the necessary prerequisites [https://nbsphinx.readthedocs.io/installation.html#nbsphinx-Prerequisites] are installed.
Then, instead of pip-installing the latest release from PyPI [https://pypi.org/project/nbsphinx/],
you should get the newest development version (a.k.a. “master”) with Git:

git clone https://github.com/spatialaudio/nbsphinx.git
cd nbsphinx
python3 -m pip install -e .

… where -e stands for --editable.

When installing this way, you can quickly try other Git
branches (in this example the branch is called “another-branch”):

git checkout another-branch

If you want to go back to the “master” branch, use:

git checkout master

To get the latest changes from Github, use:

git pull --ff-only

Building the Documentation

If you make changes to the documentation, you should create the HTML
pages locally using Sphinx and check if they look OK.

Initially, you might need to install a few packages that are needed to build the
documentation:

python3 -m pip install -r doc/requirements.txt

To (re-)build the HTML files, use:

python3 setup.py build_sphinx

If you want to check the LaTeX output, use:

python3 setup.py build_sphinx -b latex

Again, you’ll probably have to use python instead of python3.
The generated files will be available in the directories build/sphinx/html/
and build/sphinx/latex/, respectively.

Building Themes

The nbsphinx documentation is available in over 30 different HTML themes [https://nbsphinx.readthedocs.io/usage.html#HTML-Themes],
with each having its own branch ending in -theme.

To simplify the building and testing of themes,
which is especially needed when changing CSS,
we provide you with command line tool to build all themes
or a user specified subset.
The tool is located at theme_comparison.py and can be run with:

python3 theme_comparison.py

Before doing that, the required dependencies can be obtained with:

python3 theme_comparison.py --requirements

This will create a list of dependencies in
theme_comparison/theme_requirements.txt.
The dependencies can then be installed with:

python3 -m pip install -r theme_comparison/theme_requirements.txt

If you just want to build a subset of the themes
(e.g. alabaster and sphinx_rtd_theme), simply run:

python3 theme_comparison.py alabaster rtd

For more information run:

python3 theme_comparison.py --help

Testing

Unfortunately, the currently available automated tests are very limited.
Contributions to improve the testing situation are of course also welcome!

The nbsphinx documentation also serves as a test case.
However, the resulting HTML/LaTeX/PDF files have to be inspected manually to
check whether they look as expected.

Sphinx’s warnings can help spot problems, therefore it is recommended to use the
-W flag to turn Sphinx warnings into errors while testing:

python3 setup.py build_sphinx -W

This flag is also used for continuous integration on Github Actions
(see the files .github/workflows/*.yml) and
CircleCI (see the file .circleci/config.yml).

Sphinx has a linkcheck builder that can check whether all URLs used in the
documentation are still valid.
This is also part of the continuous integration setup on CircelCI.

 References

References

By default, in the LaTeX/PDF output the list of references will not appear here,
but instead at the end of the document.
For a possible work-around (which is also used here)
see https://github.com/mcmtroffaes/sphinxcontrib-bibtex/issues/156.

The list of references may look something like this:

[KRKP+16]
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and Jupyter Development Team. Jupyter Notebooks—a publishing format for reproducible computational workflows. In Fernando Loizides and Birgit Schmidt, editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 87–90. IOS Press, 2016. doi:10.3233/978-1-61499-649-1-87 [https://doi.org/10.3233/978-1-61499-649-1-87].

[PGH11]
Fernando Pérez, Brian E. Granger, and John D. Hunter. Python: an ecosystem for scientific computing. Computing in Science Engineering, 13(2):13–21, 2011. doi:10.1109/MCSE.2010.119 [https://doi.org/10.1109/MCSE.2010.119].

Warning

With docutils versions 0.18 and 0.19,
the HTML output after the bibliography is broken,
see https://github.com/mcmtroffaes/sphinxcontrib-bibtex/issues/309.
This problem will be fixed in the next docutils version
(either 0.19.1 or 0.20).

 Version History

Version History

	Version 0.9.0 – 2023-03-12 – PyPI [https://pypi.org/project/nbsphinx/0.9.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.12...0.9.0]
	
	Split nbsphinx.py (a Python module) into:

	nbsphinx/__init__.py (a Python package)

	A standalone CSS file nbsphinx-code-cells.css_t

	LaTeX style file nbsphinx.sty

	Add custom HTML/CSS for thumbnail galleries

	Separate CSS file nbsphinx-gallery.css

	The CSS from Sphinx Gallery ('sphinx_gallery.load_style')
cannot be used anymore

	Use the last image in a notebook as the default thumbnail

	Version 0.8.12 – 2023-01-19 – PyPI [https://pypi.org/project/nbsphinx/0.8.12/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.11...0.8.12]
	
	Implement “link” galleries (without nested sub-documents)

	Version 0.8.11 – 2022-12-29 – PyPI [https://pypi.org/project/nbsphinx/0.8.11/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.10...0.8.11]
	
	LaTeX: apply code cell border style to all code blocks

	Version 0.8.10 – 2022-11-13 – PyPI [https://pypi.org/project/nbsphinx/0.8.10/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.9...0.8.10]
	
	Fix handling of source_suffix

	A few LaTeX fixes

	Version 0.8.9 – 2022-06-04 – PyPI [https://pypi.org/project/nbsphinx/0.8.9/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.8...0.8.9]
	
	CSS: support tables in widgets

	Avoid empty “raw” directive

	Version 0.8.8 – 2021-12-31 – PyPI [https://pypi.org/project/nbsphinx/0.8.8/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.7...0.8.8]
	
	Support for the sphinx_codeautolink extension

	Basic support for the text builder

	Version 0.8.7 – 2021-08-10 – PyPI [https://pypi.org/project/nbsphinx/0.8.7/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.6...0.8.7]
	
	Fix assertion error in LaTeX build with Sphinx 4.1.0+

	Version 0.8.6 – 2021-06-03 – PyPI [https://pypi.org/project/nbsphinx/0.8.6/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.5...0.8.6]
	
	Support for Jinja2 version 3

	Version 0.8.5 – 2021-05-12 – PyPI [https://pypi.org/project/nbsphinx/0.8.5/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.4...0.8.5]
	
	Freeze Jinja2 version to 2.11 (for now, until a bugfix is found)

	Add theme_comparison.py tool for creating multiple versions
(with different HTML themes) of the docs at once

	Version 0.8.4 – 2021-04-29 – PyPI [https://pypi.org/project/nbsphinx/0.8.4/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.3...0.8.4]
	
	Support for mathjax3_config (for Sphinx >= 4)

	Force loading MathJax on HTML pages generated from notebooks
(can be disabled with nbsphinx_assume_equations = False)

	Version 0.8.3 – 2021-04-09 – PyPI [https://pypi.org/project/nbsphinx/0.8.3/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.2...0.8.3]
	
	Increase line_length_limit (for docutils 0.17+)

	Version 0.8.2 – 2021-02-28 – PyPI [https://pypi.org/project/nbsphinx/0.8.2/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.1...0.8.2]
	
	Add support for data-footcite HTML attribute

	Disable automatic highlighting in notebooks,
setting highlight_language is no longer needed

	Version 0.8.1 – 2021-01-18 – PyPI [https://pypi.org/project/nbsphinx/0.8.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.8.0...0.8.1]
	
	Minor fixes and documentation update

	Version 0.8.0 – 2020-10-20 – PyPI [https://pypi.org/project/nbsphinx/0.8.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.7.1...0.8.0]
	
	Don’t overwrite Pygments background in notebook code cells.
To get rid of those ugly greenish code blocks,
remove pygments_style = 'sphinx' from your conf.py.

	Switch documentation to
insipid [https://insipid-sphinx-theme.readthedocs.io/] theme by default

	Require Python 3.6+

	Version 0.7.1 – 2020-06-16 – PyPI [https://pypi.org/project/nbsphinx/0.7.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.7.0...0.7.1]
	
	Avoid links on scaled images

	Version 0.7.0 – 2020-05-08 – PyPI [https://pypi.org/project/nbsphinx/0.7.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.6.1...0.7.0]
	
	Warnings can be suppressed with suppress_warnings.

	 tags are handled in Markdown cells; the alt, width,
height and class attributes are supported.

	CSS: prompts protrude into left margin if nbsphinx_prompt_width is
too small. If you want to hide the prompts, use
custom CSS [https://nbsphinx.readthedocs.io/en/0.7.0/custom-css.html].

	Version 0.6.1 – 2020-04-18 – PyPI [https://pypi.org/project/nbsphinx/0.6.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.6.0...0.6.1]
	
	.ipynb_checkpoints is automatically added to exclude_patterns

	Version 0.6.0 – 2020-04-03 – PyPI [https://pypi.org/project/nbsphinx/0.6.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.5.1...0.6.0]
	
	Thumbnail galleries (inspired by https://sphinx-gallery.github.io/)

	nbsphinx-toctree as cell tag

	Keyword arguments in nbsphinx_custom_formats

	Python 2 support has been dropped

	Version 0.5.1 – 2020-01-28 – PyPI [https://pypi.org/project/nbsphinx/0.5.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.5.0...0.5.1]
	
	This will be the last release supporting Python 2.x!

	Support for https://github.com/choldgraf/sphinx-copybutton

	Executed notebooks are now saved in the HTML output directory

	Version 0.5.0 – 2019-11-20 – PyPI [https://pypi.org/project/nbsphinx/0.5.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.4.3...0.5.0]
	
	Automatic support for Jupyter widgets, customizable with
nbsphinx_widgets_path (and nbsphinx_widgets_options)

	Version 0.4.3 – 2019-09-30 – PyPI [https://pypi.org/project/nbsphinx/0.4.3/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.4.2...0.4.3]
	
	Add option nbsphinx_requirejs_path (and nbsphinx_requirejs_options)

	Version 0.4.2 – 2019-01-15 – PyPI [https://pypi.org/project/nbsphinx/0.4.2/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.4.1...0.4.2]
	
	Re-establish Python 2 compatibility (but the clock is ticking …)

	Version 0.4.1 – 2018-12-16 – PyPI [https://pypi.org/project/nbsphinx/0.4.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.4.0...0.4.1]
	
	Fix issue #266

	Version 0.4.0 – 2018-12-14 – PyPI [https://pypi.org/project/nbsphinx/0.4.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.3.5...0.4.0]
	
	Support for “data-cite” HTML tags in Markdown cells

	Add option nbsphinx_custom_formats

	LaTeX macros \nbsphinxstartnotebook and \nbsphinxstopnotebook

	Support for cell attachments

	Add options nbsphinx_input_prompt and nbsphinx_output_prompt

	Re-design LaTeX output of code cells, fix image sizes

	Version 0.3.5 – 2018-09-10 – PyPI [https://pypi.org/project/nbsphinx/0.3.5/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.3.4...0.3.5]
	
	Disable nbconvert version 5.4 to avoid
issue #878 [https://github.com/jupyter/nbconvert/issues/878]

	Version 0.3.4 – 2018-07-28 – PyPI [https://pypi.org/project/nbsphinx/0.3.4/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.3.3...0.3.4]
	
	Fix issue #196 and other minor changes

	Version 0.3.3 – 2018-04-25 – PyPI [https://pypi.org/project/nbsphinx/0.3.3/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.3.2...0.3.3]
	
	Locally linked files are only copied for Jupyter notebooks (and not anymore
for other Sphinx source files)

	Version 0.3.2 – 2018-03-28 – PyPI [https://pypi.org/project/nbsphinx/0.3.2/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.3.1...0.3.2]
	
	Links to local files are rewritten for all Sphinx source files (not only
Jupyter notebooks)

	Version 0.3.1 – 2018-01-17 – PyPI [https://pypi.org/project/nbsphinx/0.3.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.3.0...0.3.1]
	
	Enable notebook translations (NB: The use of reST strings is temporary!)

	Version 0.3.0 – 2018-01-02 – PyPI [https://pypi.org/project/nbsphinx/0.3.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.18...0.3.0]
	
	Add options nbsphinx_prolog and nbsphinx_epilog

	Links from *.rst files to notebooks have to start with a slash

	Version 0.2.18 – 2017-12-03 – PyPI [https://pypi.org/project/nbsphinx/0.2.18/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.17...0.2.18]
	
	Fix issue #148

	Version 0.2.17 – 2017-11-12 – PyPI [https://pypi.org/project/nbsphinx/0.2.17/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.16...0.2.17]
	
	Fix issue #146

	Version 0.2.16 – 2017-11-07 – PyPI [https://pypi.org/project/nbsphinx/0.2.16/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.15...0.2.16]
	
	Fix issue #142

	Version 0.2.15 – 2017-11-03 – PyPI [https://pypi.org/project/nbsphinx/0.2.15/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.14...0.2.15]
	
	Links to subsections are now possible in all source files

	Version 0.2.14 – 2017-06-09 – PyPI [https://pypi.org/project/nbsphinx/0.2.14/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.13...0.2.14]
	
	Add option nbsphinx_kernel_name

	Version 0.2.13 – 2017-01-25 – PyPI [https://pypi.org/project/nbsphinx/0.2.13/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.12...0.2.13]
	
	Minor fixes

	Version 0.2.12 – 2016-12-19 – PyPI [https://pypi.org/project/nbsphinx/0.2.12/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.11...0.2.12]
	
	Basic support for widgets

	CSS is now “responsive”, some new CSS classes

	Version 0.2.11 – 2016-11-19 – PyPI [https://pypi.org/project/nbsphinx/0.2.11/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.10...0.2.11]
	
	Minor fixes

	Version 0.2.10 – 2016-10-16 – PyPI [https://pypi.org/project/nbsphinx/0.2.10/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.9...0.2.10]
	
	Enable JavaScript output cells

	Version 0.2.9 – 2016-07-26 – PyPI [https://pypi.org/project/nbsphinx/0.2.9/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.8...0.2.9]
	
	Add option nbsphinx_prompt_width

	Version 0.2.8 – 2016-05-20 – PyPI [https://pypi.org/project/nbsphinx/0.2.8/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.7...0.2.8]
	
	Add options nbsphinx_execute and nbsphinx_execute_arguments

	Separate “display priority” for HTML and LaTeX

	Version 0.2.7 – 2016-05-04 – PyPI [https://pypi.org/project/nbsphinx/0.2.7/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.6...0.2.7]
	
	Special CSS tuning for sphinx_rtd_theme

	Replace info/warning <div> elements with nbinfo/nbwarning

	Version 0.2.6 – 2016-04-12 – PyPI [https://pypi.org/project/nbsphinx/0.2.6/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.5...0.2.6]
	
	Support for LaTeX math environments in Markdown cells

	Add options nbsphinx_timeout and nbsphinx_codecell_lexer

	Version 0.2.5 – 2016-03-15 – PyPI [https://pypi.org/project/nbsphinx/0.2.5/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.4...0.2.5]
	
	Add option nbsphinx_allow_errors to globally ignore exceptions

	Separate class nbsphinx.Exporter

	Version 0.2.4 – 2016-02-12 – PyPI [https://pypi.org/project/nbsphinx/0.2.4/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.3...0.2.4]
	
	Support for “nbsphinx-toctree” cell metadata

	Version 0.2.3 – 2016-01-22 – PyPI [https://pypi.org/project/nbsphinx/0.2.3/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.2...0.2.3]
	
	Links from notebooks to local files can now be used

	Version 0.2.2 – 2016-01-06 – PyPI [https://pypi.org/project/nbsphinx/0.2.2/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.1...0.2.2]
	
	Support for links to sub-sections in other notebooks

	Version 0.2.1 – 2016-01-04 – PyPI [https://pypi.org/project/nbsphinx/0.2.1/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.2.0...0.2.1]
	
	No need to mention source_suffix and source_parsers in conf.py

	Version 0.2.0 – 2015-12-27 – PyPI [https://pypi.org/project/nbsphinx/0.2.0/] – diff [https://github.com/spatialaudio/nbsphinx/compare/0.1.0...0.2.0]
	
	Add support for allow_errors and hidden metadata

	Add custom reST template

	Add nbinput and nboutput directives with HTML+CSS and LaTeX formatting

	Turn nbsphinx into a Sphinx extension

	Version 0.1.0 – 2015-11-29
	Initial release

 Index

Index

 B
 | E

B

 	
 	
 built-in function

 	example_python_function()

E

 	
 	
 example_python_function()

 	built-in function

 Custom Notebook Formats

Custom Notebook Formats

By default, Jupyter notebooks are stored in files with the suffix .ipynb, which use the JSON format for storage.

However, there are libraries available which allow storing notebooks in different formats, using different file suffixes.

To use a custom notebook format in nbsphinx, you can specify the nbsphinx_custom_formats option in your conf.py file. You have to provide the file extension and a conversion function that takes the contents of a file (as a string) and returns a Jupyter notebook object.

nbsphinx_custom_formats = {
 '.mysuffix': 'mylibrary.converter_function',
}

The converter function can be given as a string (recommended) or as a function object.

If a conversion function takes more than a single string argument, you can specify the function name plus a dictionary with keyword arguments which will be passed to the conversion function in addition to the file contents.

nbsphinx_custom_formats = {
 '.mysuffix': ['mylibrary.converter_function', {'some_arg': 42}],
}

You can of course use multiple formats by specifying multiple conversion functions.

Example: Jupytext

One example for a library which provides a custom conversion function is jupytext [https://github.com/mwouts/jupytext], which allows storing the contents of Jupyter notebooks in Markdown and R-Markdown, as well as plain Julia, Python and R files.

Since its conversion function takes more than a single string argument, we have to pass a keyword argument, e.g.:

nbsphinx_custom_formats = {
 '.Rmd': ['jupytext.reads', {'fmt': 'Rmd'}],
}

This very page is an example of a notebook stored in the py:percent format (see docs [https://jupytext.readthedocs.io/en/latest/formats.html#the-percent-format]):

[1]:

!head -20 custom-formats.pct.py

%% [markdown]
Custom Notebook Formats
#
By default, Jupyter notebooks are stored in files with the suffix `.ipynb`,
which use the JSON format for storage.
#
However, there are libraries available which allow storing notebooks
in different formats, using different file suffixes.
#
To use a custom notebook format in `nbsphinx`, you can specify the
`nbsphinx_custom_formats` option in your `conf.py` file.
You have to provide the file extension
and a conversion function that takes the contents of a file (as a string)
and returns a Jupyter notebook object.
#
```python
nbsphinx_custom_formats = {
'.mysuffix': 'mylibrary.converter_function',
}
```

To select a suitable conversion function,
we use the following setting in conf.py:

nbsphinx_custom_formats = {
 '.pct.py': ['jupytext.reads', {'fmt': 'py:percent'}],
 '.md': ['jupytext.reads', {'fmt': 'Rmd'}],
}

Another example is this gallery example page.

 An Orphan Notebook (HTML Only)

An Orphan Notebook (HTML Only)

This means that it doesn’t appear in a toctree [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree] (see index.rst), but other pages can still link to it …

	… from a Markdown cell of another notebook using

[some link text](notebookname.ipynb)

	… from a reST page using

`some link text <notebookname.ipynb>`_

Sphinx raises a warning in case of orphaned documents:

WARNING: document isn't included in any toctree

If you want to avoid this warning, you can add this to the notebook’s JSON metadata:

"nbsphinx": {
 "orphan": true
},

Note:

Orphan notebooks are not included in the LaTeX output!

Back to main page

 Dummy Notebook 2 for Gallery

Dummy Notebook 2 for Gallery

This is a dummy file just to fill the gallery in the reST file.

The thumbnail image is assigned in conf.py.

The source file is, for no particular reason, a Python script adhering to the py:percent format. It is parsed with the help of Jupytext [https://jupytext.readthedocs.io/], see Custom Notebook Formats.

[1]:

from pathlib import Path

[2]:

filename = 'due-rst.pct.py'

print(Path(filename).read_text())

%% [markdown]
Dummy Notebook 2 for Gallery
#
This is a dummy file just to fill
[the gallery in the reST file](../a-normal-rst-file.rst#thumbnail-galleries).
#
The thumbnail image is assigned in [conf.py](../conf.py).

%% [markdown]
The source file is, for no particular reason,
a Python script adhering to the `py:percent` format.
It is parsed with the help of [Jupytext](https://jupytext.readthedocs.io/),
see [Custom Notebook Formats](../custom-formats.ipynb).

%%
from pathlib import Path

%%
filename = 'due-rst.pct.py'

print(Path(filename).read_text())

_images/raw_cells_jupyterlab.png
= Fie Eat
= | uncher
8+ X
»
Simple

View Run Kemel Tabs Settings Help

% % raw-cells.ipynb x "rsr'm** a *raw cell® in
00> 88 Com R o | rest format.”
resT A cenags ®
Raw cells in "reST" format are interpreted as CiED
reStructuredText and parsed by Sphin. Thus,you can e
e.g. use its cross-referencing abilities for automatically de Type
creating/updating links to the definition of modules, e
lasss,functions, and simlar. The result s viible n o NEComvert Formst

both HTML and LaTeX outpui.
ReStructured Text

“taI'mts a fraw cell® in rest_ format.”

T can contain sphinx roles such as a Link to
+func:" example_python_function’.

_resT: https://wm. sphinx-doc.org/rest. htal

Markdown

Raw cells in "Markdown" format are interpreted as
Markdown, and the result s included in both HTML
and LaTeX output. Since the Jupyter Notebook also
supports normal Markdown cells, this might not be
useful atall

O @1 @ Python3 (pykemel | ldie Mode: Comm.

v

ynb

_images/subdir_a-notebook-in-a-subdir_2_0.png
A
Jupyter!

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Jupyter Notebook Tools for Sphinx

 		
 Installation

 		
 nbsphinx Packages

 		
 nbsphinx Prerequisites

 		
 Python

 		
 Sphinx

 		
 pip

 		
 pandoc

 		
 Pygments Lexer for Syntax Highlighting

 		
 Jupyter Kernel

 		
 Usage

 		
 Project Setup

 		
 Running Sphinx

 		
 Watching for Changes with sphinx-autobuild

 		
 Automatic Creation of HTML and PDF output on readthedocs.org

 		
 Using requirements.txt

 		
 Using conda

 		
 Automatic Creation of HTML and PDF output on GitLab Pages

 		
 HTML Themes

 		
 Sphinx’s Built-In Themes

 		
 3rd-Party Themes

 		
 Using Notebooks with Git

 		
 Configuration

 		
 Sphinx Configuration Values

 		
 exclude_patterns

 		
 extensions

 		
 html_css_files

 		
 html_sourcelink_suffix

 		
 latex_additional_files

 		
 mathjax3_config

 		
 pygments_style

 		
 suppress_warnings

 		
 nbsphinx Configuration Values

 		
 nbsphinx_allow_errors

 		
 nbsphinx_assume_equations

 		
 nbsphinx_codecell_lexer

 		
 nbsphinx_custom_formats

 		
 nbsphinx_epilog

 		
 nbsphinx_execute

 		
 nbsphinx_execute_arguments

 		
 nbsphinx_input_prompt

 		
 nbsphinx_kernel_name

 		
 nbsphinx_output_prompt

 		
 nbsphinx_prolog

 		
 nbsphinx_prompt_width

 		
 nbsphinx_requirejs_options

 		
 nbsphinx_requirejs_path

 		
 nbsphinx_responsive_width

 		
 nbsphinx_thumbnails

 		
 nbsphinx_timeout

 		
 nbsphinx_widgets_options

 		
 nbsphinx_widgets_path

 		
 Markdown Cells

 		
 Equations

 		
 Automatic Equation Numbering

 		
 Manual Equation Numbering

 		
 Citations

 		
 Footnote citations

 		
 Code

 		
 Tables

 		
 Images

 		
 Using the HTML tag

 		
 SVG support for LaTeX

 		
 Cell Attachments

 		
 HTML Elements (HTML only)

 		
 Info/Warning Boxes

 		
 Links to Other Notebooks

 		
 Links to *.rst Files (and Other Sphinx Source Files)

 		
 Links to Local Files

 		
 Links to Domain Objects

 		
 Code Cells

 		
 Code, Output, Streams

 		
 Cell Magics

 		
 Special Display Formats

 		
 Local Image Files

 		
 Image URLs

 		
 Math

 		
 Plots

 		
 Pandas Dataframes

 		
 Markdown Content

 		
 YouTube Videos

 		
 Interactive Widgets (HTML only)

 		
 Arbitrary JavaScript Output (HTML only)

 		
 Unsupported Output Types

 		
 ANSI Colors

 		
 Raw Cells

 		
 Usage

 		
 Jupyter Notebook

 		
 JupyterLab

 		
 Available Raw Cell Formats

 		
 None

 		
 reST

 		
 Markdown

 		
 HTML

 		
 LaTeX

 		
 Python

 		
 Hidden Cells

 		
 Controlling Notebook Execution

 		
 Pre-Executing Notebooks

 		
 Long-Running Cells

 		
 Rare Libraries

 		
 Exceptions

 		
 Client-specific Outputs

 		
 Interactive Input

 		
 Explicitly Dis-/Enabling Notebook Execution

 		
 Ignoring Errors

 		
 Ignoring Errors on a Per-Cell Basis

 		
 Configuring Kernels

 		
 Kernel Name

 		
 Kernel Arguments

 		
 Environment Variables

 		
 Cell Execution Timeout

 		
 Prolog and Epilog

 		
 Examples

 		
 Custom Notebook Formats

 		
 Example: Jupytext

 		
 Notebooks in Sub-Directories

 		
 A Sub-Section

 		
 That’s a “Strange” Section

 		
 Creating Thumbnail Galleries

 		
 Gallery With Nested Documents

 		
 Last Image Is Used by Default

 		
 Using a Cell Tag to Select a Thumbnail

 		
 Using Cell Metadata to Select a Thumbnail and Provide a Tooltip

 		
 Choosing from Multiple Outputs

 		
 No Thumbnail Available

 		
 Specifying a Thumbnail File

 		
 Gallery With Links (HTML only)

 		
 Using toctree In A Notebook

 		
 A Notebook that’s just a “toctree” Target

 		
 Custom CSS

 		
 For All Pages

 		
 For All RST files

 		
 For All Notebooks

 		
 For a Single Notebook

 		
 Normal reStructuredText Files

 		
 Links to Notebooks (and Other Sphinx Source Files)

 		
 Links to Notebooks, Ye Olde Way

 		
 Sphinx Directives for Info/Warning Boxes

 		
 Domain Objects

 		
 example_python_function()

 		
 References

 		
 Citations

 		
 Footnote citations

 		
 Thumbnail Link Galleries (HTML only)

 		
 Thumbnail Galleries

 		
 Dummy Notebook 1 for Gallery

 		
 Dummy Notebook 2 for Gallery

 		
 Using Markdown Files

 		
 Links to Notebooks (and Other Sphinx Source Files)

 		
 Math

 		
 Tables

 		
 Images

 		
 External Links

 		
 Contributing

 		
 Development Installation

 		
 Building the Documentation

 		
 Building Themes

 		
 Testing

 		
 References

 		
 Version History

_static/plus.png

_images/code-cells_20_0.png
A
Jupyter!

_images/code-cells_21_0.png
A
Jupyter!

_images/code-cells_26_0.png

_images/code-cells_44_0.png
60 A

50 1

40 A

30 1

20 1

10 A

10

_images/code-cells_41_0.png
50

30

20

10

10

_images/gallery_multiple-outputs_2_2.png
A
Jupyter!

_images/gallery_multiple-outputs_2_3.png

_images/nbsphinx.png
Ppypi package 0.9.0

_images/notebook_icon.png
A
Jupyter!

_images/raw_cells_jupyter_notebook.png
